Which of the following is a correct mechanism for the formation of 2-methylbut-2-ene from 2-bromo-3-methylbutane?

A

B

C

D

(Total 1 mark)
There are many uses of halogenated organic compounds despite environmental concerns.

(a) Bromotrifluoromethane is used in fire extinguishers in aircraft. Bromotrifluoromethane is formed when trifluoromethane reacts with bromine.

\[
\text{CHF}_3 + \text{Br}_2 \rightarrow \text{CBrF}_3 + \text{HBr}
\]

The reaction is a free-radical substitution reaction similar to the reaction of methane with chlorine.

(i) Write an equation for each of the following steps in the mechanism for the reaction of CHF$_3$ with Br$_2$

Initiation step

..

First propagation step

..

Second propagation step

..

A termination step

..

(ii) State one condition necessary for the initiation of this reaction.

..

There are many uses of halogenated organic compounds despite environmental concerns.

(b) Bromine-containing and chlorine-containing organic compounds may have a role in the decomposition of ozone in the upper atmosphere.

(i) Draw an appropriate displayed formula in the space provided to complete the following equation to show how CBrF$_3$ may produce bromine atoms in the upper atmosphere.

\[
\text{CBrF}_3 \rightarrow \text{Br}^- + \text{Br}^-
\]

..

(1)
(ii) In the upper atmosphere, it is more likely for CBrF$_3$ to produce bromine atoms than it is for CClF$_3$ to produce chlorine atoms.

Suggest one reason for this.

..
..
..

(1)

(iii) Bromine atoms have a similar role to chlorine atoms in the decomposition of ozone. The overall equation for the decomposition of ozone is

$$2O_3 \rightarrow 3O_2$$

Write two equations to show how bromine atoms (Br•) act as a catalyst in the decomposition of ozone.

Explain how these two decomposition equations show that bromine atoms behave as a catalyst.

Equation 1

..

Equation 2

..

Explanation ...

..
..

(3) (Total 10 marks)
Consider the following scheme of reactions.

(a) Give the IUPAC name for compound P and that for compound Q.

P ..
Q ..

(b) The conversion of P into Q in Reaction 1 uses HCl

Name and outline a mechanism for this reaction.
..

(5)

(c) The conversion of Q into R in Reaction 2 uses NH₃

Name and outline a mechanism for this reaction.
..

(5)
(d) State the type of reaction shown by Reaction 3.

Identify a reagent for this reaction.

Give one condition necessary for a high yield of product when Q is converted into P.

..
..
..
..
..
..
..

(e) Hydrogen bromide (HBr) could be used in the overall conversion of P into R, instead of using HCl.

Hydrogen bromide is made by the reaction of NaBr with concentrated phosphoric acid. Concentrated sulfuric acid is not used to make HBr from NaBr.

Write an equation for the reaction of NaBr with H₃PO₄ to produce HBr and Na₃PO₄ only.

Identify two toxic gases that are formed, together with HBr, when NaBr reacts with concentrated H₂SO₄.

State the role of H₂SO₄ in the formation of these two toxic gases.

..
..
..
..
..
..
..
..
..

(Total 19 marks)
Consider the following reaction sequence starting from methylbenzene.

(a) Name the type of mechanism for reaction 1.

..

(1)

(b) Compound J is formed by reduction in reaction 2.

(i) Give a reducing agent for this reaction.

..

(1)

(ii) Write an equation for this reaction. Use [H] to represent the reducing agent.

..

(1)

(iii) Give a use for J.

..

(1)
(c) Outline a mechanism for the reaction of bromomethane with an excess of compound J. You should represent J as RNH₂ in the mechanism.

(d) Compound K (C₆H₅CH₂NH₂) is a structural isomer of J. Explain why J is a weaker base than K.

..
..
..
..
..
..
..

(Total 11 marks)
The following table gives the names and structures of some structural isomers with the molecular formula C\textsubscript{5}H\textsubscript{10}.

<table>
<thead>
<tr>
<th>Name of isomer</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isomer 1</td>
<td>pent-2-ene</td>
</tr>
<tr>
<td></td>
<td>(\text{CH}_3\text{CH} = \text{CHCH}_2\text{CH}_3)</td>
</tr>
<tr>
<td>Isomer 2</td>
<td>cyclopentane</td>
</tr>
<tr>
<td>Isomer 3</td>
<td>3-methylbut-1-ene</td>
</tr>
<tr>
<td></td>
<td>((\text{CH}_3)_2\text{CHCH} = \text{CH}_2)</td>
</tr>
<tr>
<td>Isomer 4</td>
<td>2-methylbut-2-ene</td>
</tr>
<tr>
<td></td>
<td>((\text{CH}_3)_2\text{C} = \text{CHCH}_3)</td>
</tr>
<tr>
<td>Isomer 5</td>
<td>2-methylbut-1-ene</td>
</tr>
<tr>
<td></td>
<td>(\text{H}_2\text{C} = \text{C(\text{CH}_3)\text{CH}_2\text{CH}_3})</td>
</tr>
</tbody>
</table>

(a) Isomer 1 exists as E and Z stereoisomers.

(i) State the meaning of the term stereoisomers.

..
..
..
..
..
..
..

(2)

(ii) Draw the structure of the E stereoisomer of Isomer 1.
(b) A chemical test can be used to distinguish between separate samples of Isomer 1 and Isomer 2.

Identify a suitable reagent for the test.
State what you would observe with Isomer 1 and with Isomer 2.

Reagent..

Observation with Isomer 1..

Observation with Isomer 2..

(c) Use Table A on the Data Sheet when answering this question.
Isomer 3 and Isomer 4 have similar structures.

(i) State the infrared absorption range that shows that Isomer 3 and Isomer 4 contain the same functional group.

...

...

...

...

...

(i)

(ii) State one way that the infrared spectrum of Isomer 3 is different from the infrared spectrum of Isomer 4.

...

...

...

...

...

(d) Two alcohols are formed by the hydration of Isomer 4.

Draw the displayed formula for the alcohol formed that is oxidised readily by acidified potassium dichromate(VI).
(e) Isomer 4 reacts with hydrogen bromide to give two structurally isomeric bromoalkanes.

(i) Name and outline a mechanism for the reaction of Isomer 4 with hydrogen bromide to give 2-bromo-2-methylbutane as the major product.

\[(\text{CH}_3)_2\text{C} = \text{CHCH}_3 + \text{HBr} \rightarrow (\text{CH}_3)_2\text{CBrCH}_2\text{CH}_3\]

Name of mechanism...

Mechanism

(ii) The minor product in this reaction mixture is 2-bromo-3-methylbutane.

Explain why this bromoalkane is formed as a minor product.
...
...
...
...
...
...
...

(f) Name and outline a mechanism for the following reaction to form Isomer 5. State the role of the hydroxide ion in this reaction.

\[(\text{CH}_3)_2\text{CBrCH}_2\text{CH}_3 + \text{KOH} \rightarrow \text{H}_2\text{C} = \text{C}(\text{CH}_3)\text{CH}_2\text{CH}_3 + \text{KBr} + \text{H}_2\text{O}\]

Name of mechanism ...

Mechanism

Role of hydroxide ion ...

(5)
(Total 21 marks)
The carboxylic acid 3-methylbutanoic acid is used to make esters for perfumes. The following scheme shows some of the reactions in the manufacture of this carboxylic acid.

\[
\begin{array}{c}
\text{Reactions} \\
\text{1} \quad \text{(CH}_3\text{)}_2\text{CHCH}_{2}\text{OH} \quad \text{Reaction 1} \quad \text{(CH}_3\text{)}_2\text{CHCH}_{2}\text{Br} \\
\text{2} \quad \text{(CH}_3\text{)}_2\text{CHCH}_{2}\text{COOH} \quad \text{Reactions 3} \quad \text{(CH}_3\text{)}_2\text{CHCH}_{2}\text{CN} \\
\text{3-methylbutanoic acid} \\
\end{array}
\]

(a) One of the steps in the mechanism for Reaction 1 involves the replacement of the functional group by bromine.

(i) Use your knowledge of organic reaction mechanisms to complete the mechanism for this step by drawing two curly arrows on the following equation.

\[
\begin{align*}
\text{Br}^{-}: \\
\text{H}_3\text{C} &- \text{CH} - \text{CH}_2 - \text{CH}_2 - \text{OH}_2 & \rightarrow & \text{H}_3\text{C} &- \text{CH} - \text{CH}_2 - \text{CH}_2 - \text{Br} & + & \text{H}_2\text{C} \\
\text{CH}_3 & & & \text{CH}_3 \\
\end{align*}
\]

(ii) Deduce the name of the mechanism in part (i).

Give the IUPAC name of (CH\text{3})\text{2CHCH}_{2}\text{Br}
(b) Reaction 3 is an acid-catalysed reaction in which water is used to break chemical bonds when the CN functional group is converted into the COOH functional group. Infrared spectroscopy can be used to distinguish between the compounds in this reaction.

Deduce the name of the type of reaction that occurs in Reaction 3.

Identify one bond in $(\text{CH}_3)_2\text{CHCH}_2\text{CN}$ and a different bond in $(\text{CH}_3)_2\text{CHCH}_2\text{COOH}$ that can be used with infrared spectroscopy to distinguish between each compound. For each of these bonds, give the range of wavenumbers at which the bond absorbs. Use Table A on the Data Sheet when answering this question.
(c) When 3-methylbutanoic acid reacts with ethanol in the presence of an acid catalyst, an equilibrium is established. The organic product is a pleasant-smelling ester.

\[
(CH_3)_2CHCH_2COOH + CH_3CH_2OH \rightleftharpoons (CH_3)_2CHCH_2COOCH_2CH_3 + H_2O
\]
an ester

The carboxylic acid is very expensive and ethanol is inexpensive. In the manufacture of this ester, the mole ratio of carboxylic acid to ethanol used is 1 to 10 rather than 1 to 1.

(i) Use Le Chatelier's principle to explain why a 1 to 10 mole ratio is used. In your explanation, you should not refer to cost.

..
..
..
..
..
..
..
(Extra space) ...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
(3)

(ii) Explain how a catalyst increases the rate of a reaction.

..
..
..
..
..
..
..
..
(Extra space) ...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
(2)
(Total 12 marks)
The carbonyl compound CH$_3$CH$_2$CHO reacts very slowly with HCN

(a) Name and outline a mechanism for the reaction of CH$_3$CH$_2$CHO with HCN

Name of mechanism ...

Mechanism

(b) The reaction in part (a) produces a pair of enantiomers.

(i) Draw the structure of each enantiomer to show how they are related to each other.

(ii) State and explain how you could distinguish between the two enantiomers.

...
...
...
...

(c) Give the IUPAC name of the product of the reaction in part (a).

..
(d) In practice, KCN rather than HCN is added to the carbonyl compound.

Given that \(K_a \) for HCN = \(4.0 \times 10^{-10} \) mol dm\(^{-3} \), suggest why the reaction with HCN is very slow.

..
..
..
..
..
(2)

(e) Acrylic fibres are used as a substitute for wool. Acrylics are copolymers of acrylonitrile with other compounds.

Acrylonitrile is the common name for the following compound.

\[\text{H}_2\text{C} = \text{CH} - \text{C} \equiv \text{N} \]

(i) Acrylonitrile can be formed from propene.

Write an equation for the reaction of propene with ammonia and oxygen to form acrylonitrile and one other product.

...
(1)

(ii) The term copolymer is used to describe the product obtained when two or more different monomers form a polymer.

Draw the repeating unit of the acrylic copolymer that contains 75% acrylonitrile monomer and 25% chloroethene monomer.

...
(1)

(iii) Name the type of polymerisation involved in part (ii)

...
(1)

(Total 15 marks)
(a) **Ester 1** and **Ester 2** were studied by 1H n.m.r. spectroscopy.

\[
\begin{align*}
\text{Ester 1} & \quad \text{Ester 2} \\
\text{CH}_3\text{C}\text{O}\text{CH}_2\text{CH}_3 & \quad \text{CH}_3\text{CH}_2\text{C}\text{O} \text{CH}_3
\end{align*}
\]

One of the two esters produced this spectrum.

Deduce which of the two esters produced the spectrum shown. In your answer, explain the position and splitting of the quartet peak at $\delta = 4.1$ ppm in the spectrum.

Predict the δ value of the quartet peak in the spectrum of the other ester.

Use **Table B** on the Data Sheet.
(b) Cetrimide is used as an antiseptic.

\[\text{Cetrimide} = \left[\text{CH}_3(\text{CH}_2)_{15}\text{N(CH}_3)_3 \right]^+ \text{ Br}^- \]

Name this type of compound.

Give the reagent that must be added to \(\text{CH}_3(\text{CH}_2)_{15}\text{NH}_2 \) to make cetrimide and state the reaction conditions.

Name the type of mechanism involved in this reaction.

..
..
..
..
..
..
..
..
..

(4)

(c) Give a reagent that could be used in a test-tube reaction to distinguish between benzene and cyclohexene.

Describe what you would see when the reagent is added to each compound and the test tube is shaken.

..
..
..
..
..
..
..
..
..

(3)

(Total 11 marks)
Chlorine can be used to make chlorinated alkanes such as dichloromethane.

(a) Write an equation for each of the following steps in the mechanism for the reaction of chloromethane (CH$_3$Cl) with chlorine to form dichloromethane (CH$_2$Cl$_2$).

Initiation step

..

First propagation step

..

Second propagation step

..

The termination step that forms a compound with empirical formula CH$_2$Cl.

..

(b) When chlorinated alkanes enter the upper atmosphere, carbon-chlorine bonds are broken. This process produces a reactive intermediate that catalyses the decomposition of ozone. The overall equation for this decomposition is

\[2O_3 \rightleftharpoons 3O_2 \]

(i) Name the type of reactive intermediate that acts as a catalyst in this reaction.

..

(ii) Write two equations to show how this intermediate is involved as a catalyst in the decomposition of ozone.

Equation 1..

Equation 2..

(Total 7 marks)
(a) Name and outline a mechanism for the reaction of 2-bromo-2-methylpropane with ethanolic potassium hydroxide to form the alkene 2-methylpropene, \((\text{CH}_3)_2\text{C}=\text{CH}_2 \)

Name of mechanism ...

Mechanism

(b) Two stereoisomers of but-2-ene are formed when 2-bromobutane reacts with ethanolic potassium hydroxide.

(i) Explain what is meant by the term *stereoisomers*.

...

...

(ii) Draw the structures and give the names of the two stereoisomers of but-2-ene.

Stereoisomer 1
Stereoisomer 2

Name .. *Name* ..

(iii) Name this type of stereoisomerism.

...

(c) When 2-bromo-2-methylpropane reacts with aqueous potassium hydroxide, 2-methylpropan-2-ol is formed as shown by the following equation.

\[
\begin{array}{c}
\text{CH}_3 \\
\text{H}_3\text{C} - \text{C} - \text{CH}_3 + \text{KOH} \rightarrow \text{H}_3\text{C} - \text{C} - \text{CH}_3 + \text{KBr} \\
\text{Br} \quad \text{OH}
\end{array}
\]

State the role of the hydroxide ions in this reaction.

...
(d) Write an equation for the reaction that occurs when CH₃CH₂CH₂CH₂Br reacts with an excess of ammonia. Name the organic product of this reaction.

Equation ...

Name of product ..

(3)
(Total 13 marks)

Chlorination of ethane follows a free-radical substitution mechanism. This mechanism is similar to that which occurs when methane is chlorinated. The overall equation for the reaction of ethane to form chloroethane is given below.

\[\text{C}_2\text{H}_6 + \text{Cl}_2 \rightarrow \text{C}_2\text{H}_5\text{Cl} + \text{HCl} \]

State the conditions and outline a mechanism for this reaction. Show how butane can be formed in this reaction.

(Total 5 marks)

The mechanism for the reaction of methane with fluorine is a free-radical substitution similar to the chlorination of methane.

(a) Outline the following steps in the mechanism for the reaction of methane with fluorine to form fluoromethane, CH₃F

Initiation step

...

First propagation step

...
Second propagation step

A termination step

(b) Write an overall equation for the reaction of fluorine with fluoromethane to form tetrafluoromethane.

(a) Addition reactions to both alkenes and carbonyl compounds can result in the formation of isomeric compounds.

(i) Choose an alkene with molecular formula C₄H₈ which reacts with HBr to form two structural isomers. Give the structures of these two isomers and name the type of structural isomerism shown.

Outline a mechanism for the formation of the major product.

(ii) Using HCN and a suitable carbonyl compound with molecular formula C₃H₆O, outline a mechanism for an addition reaction in which two isomers are produced. Give the structures of the two isomers formed and state the type of isomerism shown.

(b) Explain why ethanoyl chloride reacts readily with nucleophiles.
Write an equation for one nucleophilic addition–elimination reaction of ethanoyl chloride. (A mechanism is not required.)
Consider the following reaction scheme.

(a) (i) Name the mechanism for Reaction 1.

(ii) Explain why 1-bromopropane is only a minor product in Reaction 1.

(b) Give a suitable reagent and state the essential conditions required for Reaction 3.

Reagent ..

Conditions ...

(c) The reagent used for Reaction 3 can also be used to convert 2-bromopropane into propene. State the different conditions needed for this reaction.

..

(d) Reaction 2 proceeds in two stages.

Stage 1 \[\text{CH}_3\text{CH} = \text{CH}_2 + \text{H}_2\text{SO}_4 \rightarrow \text{CH}_3\text{CH} (\text{OSO}_2\text{OH})\text{CH}_3 \]

Stage 2 \[\text{CH}_3\text{CH} (\text{OSO}_2\text{OH})\text{CH}_3 + \text{H}_2\text{O} \rightarrow \text{CH}_3\text{CH} (\text{OH})\text{CH}_3 + \text{H}_2\text{SO}_4 \]

(i) Name the class of alcohols to which propan-2-ol belongs.

..
(ii) Outline a mechanism for Stage 1 of Reaction 2, using concentrated sulphuric acid.

(iii) State the overall role of the sulphuric acid in Reaction 2.

..

(6) (Total 12 marks)

(a) Bromomethane, CH₃Br, can be formed by a reaction between bromine and methane.

The mechanism for this reaction is similar to the mechanism for the chlorination of methane.

(i) Name the mechanism for this reaction.

..

(ii) Give the name of, and state an essential condition for, the first step in the mechanism for this reaction.

Name ..

Essential condition ...
(iii) Write an equation for a termination step in the mechanism for this reaction which gives ethane as a product.

..

(iv) Bromomethane can undergo further substitution. Write an overall equation for the reaction between bromomethane and bromine in which dibromomethane is formed.

..

..

(b) Bromomethane reacts with the nucleophile ammonia according to the following equation.

\[\text{CH}_3\text{Br} + 2\text{NH}_3 \rightarrow \text{CH}_3\text{NH}_2 + \text{NH}_4\text{Br} \]

(i) Explain what is meant by the term *nucleophile*.

..

..

(ii) Name the organic product of this reaction.

..
(a) Chloromethane can be made by the reaction of chlorine with methane.

(i) Give one essential condition for this reaction.

...

(ii) Name the mechanism for this reaction.

...

(iii) Further substitution can occur during this reaction. Identify the main organic product when a large excess of chlorine is used in this reaction.

...

(b) Ethanenitrile can be made by reacting chloromethane with potassium cyanide.

(i) Write an equation for this reaction.

...

(ii) Name the mechanism for this reaction.

...
(iii) Explain, in terms of bond enthalpies, why bromomethane reacts faster than chloromethane with potassium cyanide.

..

..

..

(c) Ethanenitrile can be hydrolysed to a carboxylic acid by heating it under reflux with a dilute acid. Identify the carboxylic acid formed in this reaction.

..

(d) Chloromethane can react with ammonia to produce a primary amine.

(i) What feature of the chloromethane molecule makes it susceptible to attack by an ammonia molecule?

...

(ii) Name the amine produced in this reaction.

...

(iii) Outline a mechanism for this reaction.
Ethene is an important starting point for the manufacture of plastics and pharmaceutical chemicals. Most of the ethene used by industry is produced by the thermal cracking of ethane obtained from North Sea gas (Reaction 1). It is also possible to make ethene either from chloroethane (Reaction 2) or from ethanol (Reaction 3).

![Chemical diagram]

(a) Give essential conditions and reagents for each of Reactions 2 and 3.

(b) Name and outline a mechanism for Reaction 2. Suggest a reason why chloroethane is not chosen by industry as a starting material to make ethene commercially.

(c) Name and outline a mechanism for Reaction 3. Suggest why this route to ethene may become used more commonly in the future as supplies of North Sea gas begin to run out.

When chlorine reacts with trichloromethane, tetrachloromethane, CCl₄, is formed.

(a) (i) Write the overall equation for this reaction.

(ii) State one essential condition for this reaction.
(b) The mechanism for the chlorination of trichloromethane is free-radical substitution, which proceeds by a series of steps. Write equations for the steps named below in this chlorination.

Initiation step

..

First propagation step

..

Second propagation step

..

A termination step

..

(Total 6 marks)

(a) Compounds with double bonds between carbon atoms can exhibit geometrical isomerism.

(i) Draw structures for the two geometrical isomers of 1,2-dichloroethene.

 Isomer 1 *Isomer 2*

(ii) What feature of the double bond prevents isomer 1 from changing into isomer 2?

..

(3)
(b) When 2-chloropropane reacts with sodium hydroxide, two different reactions occur. Each reaction produces a different organic product.

Reaction 1 \[\text{CH}_3\text{--C--CH}_3 + \text{NaOH} \rightarrow \text{CH}_3\text{--CH=CH}_2 + \text{NaCl} \]

Reaction 2 \[\text{CH}_3\text{--C--CH}_3 + \text{NaOH} \rightarrow \text{CH}_3\text{--CH\text{=}CH}_2 + \text{NaCl} + \text{H}_2\text{C} \]

(i) Outline a mechanism for Reaction 1 and state the role of the hydroxide ion in this reaction.

Mechanism

Role of the hydroxide ion ...

(ii) Outline a mechanism for Reaction 2 and state the role of the hydroxide ion in this reaction.

Mechanism

Role of the hydroxide ion ...

(7)

(Total 10 marks)
(a) Propene reacts with hydrogen bromide by an electrophilic addition mechanism forming 2-bromopropane as the major product.

The equation for this reaction is shown below.

\[
\begin{align*}
\text{H}_3\text{C} & \quad \text{C} = \text{C} \quad \text{H} \\
\text{H} & + \quad \text{HB} & \rightarrow \\
\text{Br} & \quad \text{H} & \quad \text{H} \\
\text{H} \quad \text{H} & \quad \text{H} & \quad \text{H}
\end{align*}
\]

(i) Outline the mechanism for this reaction, showing the structure of the intermediate carbocation formed.

(ii) Give the structure of the alternative carbocation which could be formed in the reaction between propene and hydrogen bromide.
(b) A substitution reaction occurs when 2-bromopropane reacts with aqueous sodium hydroxide.

(i) Draw the structure of the organic product of this reaction and give its name.

Structure

(ii) Name and outline the mechanism for this reaction.

Name of mechanism

Mechanism

(c) Under different conditions, 2-bromopropane reacts with sodium hydroxide to produce propene.

(i) Name the mechanism for this reaction.

...
(ii) State the role of sodium hydroxide in this reaction.

..

(Total 12 marks)

Which one of the following types of reaction mechanism is not involved in the above sequence?

\[
\begin{align*}
\text{CH}_3\text{CH}_2\text{CH}_3 & \rightarrow (\text{CH}_3)_2\text{CHCl} \rightarrow (\text{CH}_3)_2\text{CHCN} \\
& \Downarrow \\
(\text{CH}_3)_2\text{CHCH}_2\text{NHCOCH}_3 & \leftrightarrow (\text{CH}_3)_2\text{CHCH}_2\text{NH}_2
\end{align*}
\]

A free-radical substitution
B nucleophilic substitution
C elimination
D nucleophilic addition-elimination

(Total 1 mark)

In the presence of ultraviolet light, methane and chlorine react to form a number of chlorine-containing products, including \(\text{CH}_2\text{Cl}_2\) and \(\text{CHCl}_3\).

(i) Write an equation for the initiation step in the mechanism for this reaction.

..

(ii) Write the overall equation for the formation of \(\text{CHCl}_3\) from \(\text{CH}_2\text{Cl}_2\) and \(\text{Cl}_2\)

..

(iii) Write equations for the two propagation steps by which \(\text{CH}_2\text{Cl}_2\) is converted into \(\text{CHCl}_3\)

\textit{Equation 1} ..

\textit{Equation 2} ..
(iv) Suggest what effect increasing the intensity of the ultraviolet light would have on the rate of the reaction between methane and chlorine. Explain your answer.

Effect on rate ...

Explanation ...

(Total 6 marks)

The reaction scheme below shows the conversion of compound A, 2-methylbut-1-ene, into compound B and then into compound C.

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_2\text{CH}_3 \\
\text{CH}_2\text{CH} & \quad \text{CH}_3
\end{align*}
\]

\[\text{A} \quad \text{Step 1} \quad \text{B} \quad \text{Step 2} \quad \text{C}\]

(a) The structure of A is shown below. Circle those carbon atoms which must lie in the same plane.

\[
\begin{align*}
\text{H} & \quad \text{C} \quad \text{CH}_3 \\
\text{H} & \quad \text{C} \quad \text{CH}_2\text{CH}_3
\end{align*}
\]

(b) Outline a mechanism for the reaction in Step 1.

(c) State the reagent and condition used in Step 2. Name compound C.

Reagent ...

Condition ...

Name of compound C ...

(3)

(4)
When compound A is converted into compound C, a second alcohol, D, is also formed. Alcohol D is isomeric with C but is formed as a minor product. Identify alcohol D and explain why it is formed as the minor product.

Identity of alcohol D ...

Explanation ...
...
...
...

(3)
(Total 11 marks)

Refer to the following reaction sequence:

Which one of the following types of reaction mechanism is not involved in the above sequence?

A electrophilic addition
B electrophilic substitution
C addition–elimination
D elimination

(Total 1 mark)
The equation below represents a reaction between methane and chlorine.

\[\text{CH}_4(g) + \text{Cl}_2(g) \rightarrow \text{CH}_3\text{Cl}(g) + \text{HCl}(g) \]

(a) State an essential condition required for this reaction to occur. Explain why this condition is essential.

Condition ………………………………………………………………………………………………..

Explanation ……………………………………………………………………………………………..

(b) (i) State the type of mechanism involved in the above reaction.

………..

(ii) Name the three types of step involved in this mechanism.

Step 1 ……..

Step 2 ……..

Step 3 ……..

(c) In addition to \(\text{CH}_3\text{Cl} \), compounds such as \(\text{CH}_2\text{Cl}_2 \) and \(\text{CH}_3\text{CH}_2\text{Cl} \) may also be formed when chlorine reacts with methane.

(i) Write equations for the two steps in the mechanism by which \(\text{CH}_2\text{Cl}_2 \) is formed from \(\text{CH}_3\text{Cl} \)

Equation 1 ……………………………………………………………………………………………………….

Equation 2 ……………………………………………………………………………………………………….

(ii) Write an equation to represent a step in the mechanism in which \(\text{CH}_3\text{CH}_2\text{Cl} \) is formed.

………..

(Total 9 marks)
(a) The equation below shows the reaction of 2-bromopropane with an excess of ammonia.

\[
\text{CH}_3\text{CHBrCH}_3 + 2\text{NH}_3 \rightarrow \text{CH}_3\text{CH(NH}_2\text{)CH}_3 + \text{NH}_4\text{Br}
\]

Name and outline the mechanism involved.

Name of mechanism ...

Mechanism

(b) When 2-bromopropane is heated with ethanolic potassium hydroxide, an elimination reaction occurs. State the role of potassium hydroxide and outline a mechanism for this reaction.

Role of potassium hydroxide ..

Mechanism
Which one of the following mechanisms is not involved in the reaction sequence below?

\[\text{CH}_3\text{CH}_3 \rightarrow \text{CH}_3\text{CH}_2\text{Cl} \rightarrow \text{CH}_3\text{CH}_2\text{OH} \rightarrow \text{CH}_2=\text{CH}_2 \rightarrow \text{CH}_3\text{CH}_2\text{Br} \]

A electrophilic addition
B electrophilic substitution
C nucleophilic substitution
D free-radical substitution

(Total 1 mark)

In which of the following is a curly arrow used incorrectly?

A \[
\begin{align*}
\text{CH}_3\text{CH}_2\text{CHCH}_3 & \rightarrow \text{CH}_3\text{CH}_2\text{CHCH}_3 + :\text{Br}^- \\
& \text{Br}^- \quad \text{OH}
\end{align*}
\]

B \[
\begin{align*}
\text{CH}_3\text{CH} & =\text{CHCH}_3 \rightarrow \text{CH}_3\text{CH} & =\text{CHCH}_3 \rightarrow \text{CH}_3\text{CHCH}_2\text{CH}_3 \\
& \text{Br}^- \quad \text{Br}
\end{align*}
\]

C \[
\begin{align*}
\text{CH}_3\text{CH}_2\text{CCH}_3 & \rightarrow \text{CH}_3\text{CH}_2\text{CCH}_3 \rightarrow \text{CH}_3\text{CH}_2\text{CCH}_3 \\
& :\text{NH}_3 \quad \text{H} \quad :\text{NH}_3 \quad \text{NH}_2
\end{align*}
\]

D \[
\begin{align*}
\text{CH}_3\text{CH}_2\text{CHCH}_3 & \rightarrow \text{CH}_3\text{CH} & =\text{CHCH}_3 \\
& \text{H}
\end{align*}
\]

(Total 1 mark)
Which one of the following can react both by nucleophilic addition and by nucleophilic substitution?

A \[\text{CH}_3\text{C}\text{C}\text{CH}==\text{CH}_2 \]\n
B \[\text{H}_2\text{CCH}_2\text{CH}_2\text{C}==\text{H} \]

C \[\text{H}_2\text{C}==\text{CH}_2 \]

D \[\text{CH}_3\text{C}==\text{C}==\text{O} \]

(Total 1 mark)

In which one of the following are the curly arrows not used correctly?

A \[\text{H}==\text{Br} \quad \xrightarrow[]{} \quad \text{H}^+ + \text{Br}^- \]

B \[\text{Br} \quad \xrightarrow[]{} \quad \text{CN}^- \]

C \[\text{OH} \quad \xrightarrow[]{} \quad \text{OH}^+ \quad + \quad \text{Br}^- \]

D \[\text{CN} \quad \xrightarrow[]{} \quad \text{CN}^- \]

(Total 1 mark)
(a) (i) Initiation

\[\text{Br}_2 \rightarrow 2\text{Br}^* \]

First propagation

\[\text{Br}^* + \text{CHF}_3 \rightarrow \cdot\text{CF}_3 + \text{HBr} \]

Second propagation

\[\text{Br}_2 + \cdot\text{CF}_3 \rightarrow \text{CBrF}_3 + \text{Br}^* \]

Termination

\[2\cdot\text{CF}_3 \rightarrow \text{C}_2\text{F}_6 \text{ OR } \text{CF}_3\text{CF}_3 \text{ OR } \]

\[2\text{Br}^* \rightarrow \text{Br}_2 \text{ OR } \]

\[\text{Br}^* + \cdot\text{CF}_3 \rightarrow \text{CBrF}_3 \]

Penalise absence of dot once only

Credit the dot anywhere on the radical

(ii) Ultra-violet / uv / sunlight

OR

T > 100°C OR high temperature

(b) (i)

Displayed formula required with the radical dot on carbon
(ii) (The) C–Br (bond) breaks more readily / is weaker than (the) C–Cl (bond) (or converse)

OR

The C–Br bond enthalpy / bond strength is less than that for C–Cl (or converse)

Requires a comparison between the two bonds

Give credit for an answer that suggests that the UV frequency / energy may favour C–Br bond breakage rather than C–Cl bond breakage

Ignore correct references either to size, polarity or electronegativity

Credit correct answers that refer to, for example “the bond between carbon and bromine requires less energy to break than the bond between carbon and chlorine”

(iii) M1

\[\text{Br•} + \text{O}_3 \rightarrow \text{BrO•} + \text{O}_2 \]

M2

\[\text{BrO•} + \text{O}_3 \rightarrow \text{Br•} + 2\text{O}_2 \]

M1 and M2 could be in either order

Credit the dot anywhere on the radical

Penalise absence of dot once only

Penalise the use of multiples once only

M3 One of the following

They / it / the bromine (atom)

• does not appear in the overall equation

• is regenerated

• is unchanged at the end

• has not been used up

• provides an alternative route / mechanism

(a) P 3,3-dimethylbut-1-ene

OR accept 3,3-dimethylbutene

Ignore absence of commas, hyphens and gaps

Require correct spelling

Q 3-chloro-2,2-dimethylbutane

OR accept 2-chloro-3,3-dimethylbutane

In Q, “chloro” must come before “dimethyl”
(b) **M1** Electrophilic addition

M2 must show an arrow from the double bond towards the H atom of HCl

M3 must show the breaking of the H−Cl bond

M4 is for the structure of the carbocation

M5 must show an arrow from the lone pair of electrons on the negatively charged chloride ion towards the positively charged carbon atom on their carbocation.

NB The arrows here are double-headed

M1 both words required

For the mechanism

M3 Penalise incorrect partial charge on H−Cl bond and penalise formal charges

Ignore partial negative charge on the double bond.

Maximum 3 of 4 marks for a correct mechanism using HBr or the wrong organic reactant or wrong organic product (if shown) or a primary carbocation

Penalise once only in any part of the mechanism for a line and two dots to show a bond

Credit the correct use of “sticks”

For M5, credit attack on a partially positively charged carbocation structure, but penalise M4
M1 **Nucleophilic substitution**

For M1, both words required.

Accept phonetic spelling

M2 must show an arrow from the lone pair of electrons **on the nitrogen atom** of an ammonia molecule to the correct C atom

M3 must show the movement of a pair of electrons from the C− Cl bond to the Cl atom. Mark **M3** independently provided it is from their original molecule

M4 is for the structure of the alkylammonium ion, which could be a condensed formula. A positive charge **must** be shown on, or close to, the N atom.

M5 is for an arrow from the N−H bond to the N atom

*Award full marks for an S_{N1} mechanism in which **M2** is the attack of the ammonia on the intermediate carbocation*

NB These are double-headed arrows

For the mechanism

Penalise **M2** if NH\textsubscript{3} is negatively charged.

Penalise **M3** for formal charge on C of the C−Cl or incorrect partial charges on C−Cl

Penalise **M3** for an additional arrow from the Cl to something else

The second mole of ammonia is not essential for **M5**; therefore ignore any species here

Penalise once only for a line and two dots to show a bond

Maximum 3 of 4 marks for the mechanism for wrong organic reactant OR wrong organic product if shown

Accept the correct use of “sticks”
(d) **M1** (base) elimination

M1 Dehydrohalogenation

M2 KOH OR NaOH

M3 Must be consequential on a correct reagent in **M2**, but if incomplete or inaccurate attempt at reagent (e.g. hydroxide ion), penalise **M2** only and mark on Any one from

- high temperature OR hot OR heat / boil under reflux
- concentrated
- alcohol / ethanol (as a solvent) / (ethanolic conditions)

M3 not “reflux” alone

M3 if a temperature is stated it must be in the range 78°C to 200 °C

Ignore “pressure”

(e) **M1**

\[3\text{NaBr} + \text{H}_3\text{PO}_4 \rightarrow 3\text{HBr} + \text{Na}_3\text{PO}_4\]

M1 Credit correct ionic species in the equation

M2 and **M3**

SO\(_2\) and Br\(_2\) identified

M4

Concentrated sulfuric acid

- is an oxidising agent
- oxidises the bromide (ion) or Br\(^-\) or NaBr or HBr
- is an electron acceptor

In **M2** and **M3** the two gases need to be identified. If equations are used using sulfuric acid and the toxic gases are not identified clearly, allow one mark for the formulas of SO\(_2\) and Br\(_2\)

- apply the list principle as appropriate but ignore any reference to HBr
- the marks are for identifying the two gases either by name or formula

(a) Electrophilic substitution

Both words needed

Ignore minor misspellings

(b) (i) Sn / HCl

OR H\(_2\) / Ni **OR** H\(_2\) / Pt **OR** Fe / HCl **OR** Zn / HCl **OR** SnCl\(_2\) / HCl

Ignore conc or dil with HCl, Allow (dil) H\(_2\)SO\(_4\) but not conc H\(_2\)SO\(_4\)

Not allow HNO\(_3\) or H\(^+\)

Ignore NaOH after Sn / HCl

Ignore catalyst
(ii) \(\text{CH}_3\text{C}_6\text{H}_4\text{NO}_2 + 6[\text{H}] \rightarrow \text{CH}_3\text{C}_6\text{H}_4\text{NH}_2 + 2\text{H}_2\text{O} \)

OR

\[
\text{CH}_3\begin{array}{c}
\text{NO}_2 \\
\text{H}
\end{array} + 6[\text{H}] \rightarrow \text{CH}_3\begin{array}{c}
\text{NH}_2 \\
\text{H}
\end{array} + 2\text{H}_2\text{O}
\]

Allow molecular formulae as structures given

\(\text{C}_7\text{H}_7\text{NO}_2 + 6[\text{H}] \rightarrow \text{C}_7\text{H}_9\text{N} + 2\text{H}_2\text{O} \)

Qu states use [H], so penalised 3\(\text{H}_2 \)

(iii) making dyes

OR making quaternary ammonium salts

OR making (cationic) surfactants

OR making hair conditioner

OR making fabric softener

OR making detergents

(c)

M2

M1

M3

M4

NO Mark for name of mechanism

Allow SN1

M1 for lone pair on N and arrow to C or mid point of space between N and C

M2 for arrow from bond to Br

M3 for structure of protonated secondary amine

M4 for arrow from bond to N or + on N

For M4: ignore RNH\(_2\) or NH\(_3\) removing H\(^+\) but penalise Br\(^-\)

(d) lone or electron pair on N

If no mention of lone pair CE = 0

If lone pair mentioned but not on N then lose M1 and mark on

M1
in J spread / delocalised into ring (or not delocalised in K)

Ignore negative inductive effect of benzene
Allow interacts with \(\Pi \) cloud for M2

less available (for protonation or donation in J)

\[\text{M2} \]

OR

in K there is a positive inductive effect / electron releasing)

more available (for protonation or donation in K)

\[\text{M3} \]

(a) (i) **M1** (Compounds / molecules with) the same structural formula

Penalise M1 if ‘same structure’ or ‘different structural / displayed formula’.

M2 with atoms / bonds / groups arranged differently in space

OR atoms / bonds / groups with different spatial arrangements / different orientation

Ignore references to ‘same molecular formula’ or ‘same empirical formula’.

Mark independently.

(b) (ii)

\[
\begin{align*}
\text{H} & \quad \text{C} \quad \text{CH}_2\text{CH}_3 \\
\text{H}_3\text{C} & \quad \text{C} \quad \text{H}
\end{align*}
\]

Credit C–H\(_3\)C

Credit C\(_2\)H\(_5\)

Penalise C–CH\(_3\)CH\(_2\)
(b) \textbf{M1} \text{Br}_2 \text{ OR bromine (water) OR bromine (in CCl}_4 \text{ / organic solvent)}

\textit{If M1, has no reagent or an incorrect reagent, CE=0.}
\textit{Ignore ‘acidified’.}

\textbf{M2} Isomer 1: decolourised / goes colourless / loses its colour

\textit{For M1 penalise Br (or incorrect formula of other correct reagent), but mark on.}

\textbf{M3} Isomer 2: remains orange / red / yellow / brown / the same OR no reaction / no (observable) change OR reference to colour going to the cyclopentane layer

\textit{For M1, it must be a whole reagent and / or correct formula.}
\textit{If oxidation state given in name, it must be correct. If ‘manganate’ OR ‘manganate(IV)’ or incorrect formula, penalise M1, but mark on.}

\textbf{Alternatives: potassium manganate(VII)}

\textbf{M1} \text{KMnO}_4 \text{ in acid} \textbf{M2} \text{colourless} \textbf{M3} \text{purple}

\textbf{M1} \text{KMnO}_4 \text{ in alkali / neutral} \textbf{M2} \text{brown solid} \textbf{M3} \text{purple}

Credit for the use of \textbf{iodine}

\textbf{M1} iodine (solution / in KI) \textbf{M2} \text{colourless} \textbf{M3} (brown) to purple (credit no change)

Credit for the use of \textbf{concentrated H}_2\text{SO}_4

\textbf{M1} \text{concentrated H}_2\text{SO}_4 \textbf{M2} \text{brown} \textbf{M3} \text{no change / colourless}

\textit{Ignore ‘goes clear’.}
\textit{Ignore ‘nothing (happens)’.}
\textit{Ignore ‘no observation’.}
\textit{No credit for combustion observations.}

(c) (i) (Both infrared spectra show an absorption in range) \textbf{1620 to 1680} \text{(cm}^{-1})

\textit{Ignore reference to other ranges (eg for C–H or C–C).}

(ii) The fingerprint (region) / below 1500 cm\(^{-1}\) will be different \textbf{or} its fingerprinting will be different

\textit{OR}

different absorptions / peaks are seen (in the region) below 1500 cm\(^{-1}\) (or a specified region within the fingerprint range)

\textit{Allow the words ‘dip’ \textbf{OR} ‘spike’ \textbf{OR} ‘low transmittance’ as alternatives for absorption.}

QoL
All bonds must be drawn.
Ignore bond angles.

(e) (i) M1 Electrophilic addition
M1 both words needed.

M2 must show an arrow from the double bond towards the H atom of the H–Br molecule
M2 Ignore partial negative charge on the double bond.

M3 must show the breaking of the H–Br bond
M3 Penalise incorrect partial charges on H–Br bond and penalise formal charges.

M4 is for the structure of the tertiary carbocation
Penalise M4 if there is a bond drawn to the positive charge.
Penalise once only in any part of the mechanism for a line and two dots to show a bond.

M5 must show an arrow from the lone pair of electrons on the negatively charged bromide ion towards the positively charged carbon atom of either a secondary or a tertiary carbocation
For M5, credit attack on a partially positively charged carbocation structure but penalise M4.

Max 3 of any 4 marks in the mechanism for wrong organic reactant or wrong organic product (if shown) or secondary carbocation.
Max 2 of any 4 marks in the mechanism for use of bromine.
Do not penalise the correct use of "sticks".

NB The arrows here are double-headed
(ii) **M1** Reaction goes via intermediate *carbocations / carbonium ions*

M1 is a lower demand mark for knowledge that carbocations are involved.

M2 (scores both marks and depends on M1)

Tertiary carbocation / carbonium ion is *more stable* (than the secondary carbocation / carbonium ion)

OR

Secondary carbocation / carbonium ion is *less stable* (than the tertiary carbocation / carbonium ion)

M2 is of higher demand and requires the idea that the secondary carbocation is less stable or the tertiary carbocation is more stable. Reference to incorrect chemistry is penalised.

A carbocation may be defined in terms of alkyl groups / number of carbon atoms, rather than formally stated.
(f) **M1 Elimination**

M1 credit ‘base elimination’ but no other qualifying prefix.

Penalise one mark from their total if half-headed arrows are used.

M2 must show an arrow from the lone pair on oxygen of a negatively charged hydroxide ion to a correct H atom

Penalise **M2** if covalent KOH

M3 must show an arrow from a correct C–H bond adjacent to the C–Br bond to a correct C–C bond. Only award if an arrow is shown attacking the H atom of a correct adjacent C–H bond (in **M2**)

M4 is independent provided it is from their original molecule **BUT** penalise **M2, M3** and **M4** if nucleophilic substitution shown

Award full marks for an E1 mechanism in which **M2** is on the correct carbocation

NB The arrows here are double-headed

Penalise **M4** for formal charge on C or Br of the C–Br bond or incorrect partial charges on C–Br.

Penalise **M4** if an additional arrow is drawn from the Br of the C–Br bond to, for example, K⁺.

Ignore other partial charges.

Penalise once only in any part of the mechanism for a line and two dots to show a bond.

Max 2 of any 3 marks in the mechanism for wrong reactant or wrong organic product (if shown) or a correct mechanism that leads to the alkene 2-methylbut-2-ene.

Credit the correct use of “sticks” for the molecule except for the C–H being attacked.

M5 hydroxide ion behaves as a base / proton acceptor / electron pair donor / lone pair donor

Penalise **M5** if ‘nucleophile’.

[21]
(a) (i) **M1** double-headed curly arrow from the lone pair of the bromide ion to the C atom of the CH₂

Penalise additional arrows.

M2 double-headed arrow from the bond to the O atom

As follows

![Chemical structure](image)

(ii) **M1** nucleophilic substitution

M1 both words needed (allow phonetic spelling).

M2 1-bromo(-2-)methylpropane

M2 Require correct spelling in the name but ignore any hyphens or commas.

(b) **M1** hydrolysis

For **M1** give credit for ‘hydration’ on this occasion only.

M2 \(\text{C≡N with absorption range } 2220–2260 \text{ (cm}^{-1}\text{)}\)

Credit 1 mark from **M2** and **M3** for identifying C≡N and either O–H(acids) or C=O or C–O without reference to wavenumbers or with incorrect wavenumbers.

M3 O–H(acids) with absorption range \(2500–3000 \text{ (cm}^{-1}\text{)}\)

 OR

C=O with absorption range \(1680–1750 \text{ (cm}^{-1}\text{)}\)

 OR

C–O with absorption range \(1000–1300 \text{ (cm}^{-1}\text{)}\)

Apply the list principle to **M3**
(c) (i) **M1** Yield / product OR ester increases / goes up / gets more

M2 (By Le Chatelier’s principle) the position of equilibrium is driven / shifts / moves to the right / L to R / in the forward direction / to the product(s)

M3 – requires a correct statement in **M2**

(The position of equilibrium moves)

to oppose the increased concentration of ethanol
to oppose the increased moles of ethanol
to lower the concentration of ethanol
to oppose the change and decrease the ethanol

If no reference to M1, marks M2 and M3 can still score BUT if M1 is incorrect CE=0

If there is reference to ‘pressure’ award M1 ONLY.

(ii) **M1**

Catalysts provide an alternative route / pathway / mechanism

OR

surface adsorption / surface reaction occurs

For M1, not simply ‘provides a surface’ as the only statement.

M1 may be scored by reference to a specific example.

M2

that has a lower / reduced activation energy

OR

lowers / reduces the activation energy

Penalise M2 for reference to an increase in the energy of the molecules.

For M2, the student may use a definition of activation energy without referring to the term.

Reference to an increase in successful collisions in unit time alone is not sufficient for M2 since it does not explain why this has occurred.

(a) **Nucleophilic addition**
M4 for lp, arrow and H+

M1 and M4 include lone pair and curly arrow.

Allow: CN⁻ but arrow must start at lone pair on C.

M2 not allowed independent of M1, but allow M1 for correct attack on C⁺.

+ rather than δ⁺ on C=O loses M2.

Penalise incorrect partial charges.

M3 is for correct structure including minus sign but lone pair is part of M4.

Penalise extra curly arrows in M4.

(b) (i) M1

M1 for correct structure of product of part (a).

Allow C₂H₅⁻ for CH₃CH₂⁻.

Penalise wrongly bonded, OH or CN or CH₂CH₃ once only in clip.
M2 cannot be gained by simply swapping two or more groups with no attempt to show a mirror image, e.g. do not allow M2 for

because these do not show the enantiomers as mirror images.

Students must show an attempt at mirror images, e.g. allow

ie vertical groups same and horizontal swapped as if there was a mirror between them

No mirror need be shown

Do not penalize wedge bond when wedge comes into contact with both C & N

However these two could score M2 if placed as below as if with a “mirror” horizontally between them.

(ii) M1 (Plane) polarized light

M2 only scores following correct M1

M2 Rotated in opposite directions (equally) (only allow if M1 correct or close)

Not just in different directions but allow one rotates light to the left and one to the right.

Not molecules rotate.

(c) 2-hydroxybutane(-1-)nitrile
(d) Weak acid / (acid) only slightly / partially dissociated / ionised

IGNORE rate of dissociation.

\([\text{CN}^-]\) very low

Allow (very) few cyanide ions.

Mark independently.

(e) (i) \[\text{H}_2\text{C}=\text{CH}-\text{CH}_3 + \text{NH}_3 + \frac{3}{2}\text{O}_2 \rightarrow \text{H}_2\text{C}=\text{CH}-\text{CN} + 3\text{H}_2\text{O} \]

OR

\[\text{H}_2\text{C}=\text{CH}-\text{CH}_3 + \text{NH}_3 + 3\text{O}_2 \rightarrow \text{H}_2\text{C}=\text{CH}-\text{CN} + 3\text{H}_2\text{O}_2 \]

OR doubled.

Allow \(\text{C}_3\text{H}_6\) and \(\text{CH}_2\text{CHCN}\) or \(\text{C}_3\text{H}_3\text{N}\) on this occasion only.

(ii)

\[\begin{array}{cccccccc}
\text{H} & \text{C} & \text{H} & \text{C} & \text{H} & \text{C} & \text{H} & \text{C} \\
\text{H} & \text{H} \\
\end{array} \]

Ignore \(n\).

Must show trailing bonds.

Do not penalise \(\text{C}–\text{NC}\) bond here on this occasion.

Must contain, in any order,

3 of

\[\begin{array}{cccc}
\text{H} & \text{C} & \text{H} & \text{CN} \\
\text{H} & \text{H} & \text{H} & \text{H} \\
\end{array} \]

or

\[\begin{array}{cccc}
\text{H} & \text{H} & \text{CN} & \text{C} \\
\text{H} & \text{H} & \text{H} & \text{H} \\
\end{array} \]

\[\begin{array}{cccc}
\text{H} & \text{H} & \text{H} & \text{CN} \\
\text{H} & \text{H} & \text{H} & \text{H} \\
\end{array} \]

or

\[\begin{array}{cccc}
\text{H} & \text{H} & \text{H} & \text{CN} \\
\text{H} & \text{H} & \text{H} & \text{H} \\
\end{array} \]

Allow

and one of

\[\begin{array}{cccc}
\text{H} & \text{Cl} & \text{C} & \text{H} \\
\text{H} & \text{H} & \text{H} & \text{H} \\
\end{array} \]

\[\begin{array}{cccc}
\text{H} & \text{H} & \text{Cl} & \text{C} \\
\text{H} & \text{H} & \text{H} & \text{H} \\
\end{array} \]

Allow \(-\text{CH}_2\text{CH(\text{CN})}\text{CH}_2\text{CHCl}–\) etc.

(iii) Addition (polymerization)

Allow self-addition.

Do not allow additional.
(a) M1 Ester 1

If Ester 2, can score M3 only.

M2 peak at δ = 4.1 due to

When marking M2 and M3, check any annotation of structures in the stem at the top of the page.

M3 (δ = 4.1 peak is) quartet as adjacent / next to / attached to CH₃

M4 Other spectrum quartet at δ = 2.1-2.6 (or value in this range)

(b) M1 Quaternary (alkyl) ammonium salt / bromide

M2 CH₃Br or bromomethane

Penalise contradictory formula and name.

M3 Excess (CH₃Br or bromomethane)

Mention of acid eg H₂SO₄ OR alkali eg NaOH loses both M2 and M3.

M4 Nucleophilic substitution

Can only score M3 if reagent correct.

Ignore alcohol or ethanol (conditions) or Temp.

(c)

<table>
<thead>
<tr>
<th></th>
<th>Bromine (penalise Br but mark on)</th>
<th>Acidified KMnO₄ (Penalise missing acid but mark on)</th>
</tr>
</thead>
</table>

Wrong reagent = no marks.

If bromine colour stated it must be red, yellow, orange, brown or any combination, penalise wrong starting colour.
Benzene

<table>
<thead>
<tr>
<th></th>
<th>no reaction / colour remains / no (visible) change</th>
<th>no reaction / colour remains / no (visible) change</th>
</tr>
</thead>
</table>

Ignore ‘clear’, ‘nothing’.
Allow colour fades slowly.
Allow ‘nvc’ for no visible change.

<table>
<thead>
<tr>
<th>Benzene</th>
<th>no reaction / colour remains / no (visible) change</th>
<th>no reaction / colour remains / no (visible) change</th>
</tr>
</thead>
</table>

![Image of benzene with reactions]

<table>
<thead>
<tr>
<th>cyclohexene</th>
<th>(Bromine) decolourised</th>
<th>(Acidified KMnO₄) decolourised</th>
</tr>
</thead>
</table>

1

9

(a) **Initiation**

\[\text{Cl}_2 \rightarrow 2\text{Cl}^\cdot \]

Penalise absence of dot once only.

First propagation

\[\text{Cl}^\cdot + \text{CH}_3\text{Cl} \rightarrow \cdot\text{CH}_2\text{Cl} + \text{HCl} \]

Credit the dot anywhere on the radical.

Second propagation

\[\text{Cl}_2 + \cdot\text{CH}_2\text{Cl} \rightarrow \text{CH}_2\text{Cl}_2 + \text{Cl}^\cdot \]

Termination (must make 1,2-dichloroethane)

\[2 \cdot\text{CH}_2\text{Cl} \rightarrow \text{CH}_2\text{ClCH}_2\text{Cl} \]

Penalise C₂H₄Cl₂

1

(b) (i) (chlorine free) **radical**

Ignore formula.

(ii) **M1**

\[\text{Cl}^\cdot + \text{O}_3 \rightarrow \text{ClO}^\cdot + \text{O}_2 \]

M2

\[\text{ClO}^\cdot + \text{O}_3 \rightarrow \text{Cl}^\cdot + 2\text{O}_2 \]

M1 and M2 could be in either order.

Credit the dot anywhere on the radical.

Penalise absence of dot once only.

Individual multiples acceptable but both need to be doubled if two marks are to be awarded.

2
(a) **(base) elimination**

 (penalise other words before ‘elimination’ e.g. nucleophilic)

M1: curly arrow from lone pair of electrons on oxygen of hydroxide ion

 *(insist on a lone pair of electrons on the oxygen atom and a
 negative charge, but only credit this mark if the attack is to a correct
 H atom)*

 1

M2: curly arrow from the middle of the C–H bond to the middle
 of the C–C bond

 *(only credit this mark if the arrow originates from the correct C–H
 bond and if an attempt has been made at M1)*

 1

M3: curly arrow from the middle of the C–Br bond towards/alongside
 the Br atom

 *(credit M3 independently unless the bond breaking is contradicted
 by an additional arrow)*

 (penalise curly arrow if the C–Br has a formal positive charge)

 *(credit full marks for an E1 mechanism, with M2 awarded for a
correct curly arrow on the correct carbocation)*

 *(award a maximum of two marks for either an incorrect haloalkane
 or an incorrect organic product)*

 *(maximum 2 marks for use of 'sticks' for the haloalkane, unless RE
 from 2(b), when credit can be given)*

(b) (i) **M1**: compounds with the *same structural formula*

 1

 M2: but the bonds/groups/atoms have different spatial
 arrangements or orientation or configuration/are arranged
differently in space/3D

 (ignore reference to the same molecular formula for M1)

 1

(ii) **M1**: correct structural representation for cis-but-2-ene and
 its name or its identification as the cis isomer

 1

 M2: correct structural representation for trans-but-2-ene
 and its name or its identification as the trans isomer

 (accept representations which are 90° to linear)

 *(award one mark for two correct structures but either wrong/no
 names)*

 (maximum 1 mark for an incorrect alkene)

 1

(iii) geometric(al) or cis-trans

 1
(c) nucleophile or electron pair donor

 (penalise ‘base’)

(d) CH₃CH₂CH₂CH₂Br + 2NH₃ → CH₃CH₂CH₂CH₂NH₂ + NH₄Br

 (M1 correct product)
 (M2 balanced equation using 2NH₃ and leading to NH₄Br)
 (penalise M1 for use of C₄H₉NH₂ or for incorrect haloalkane, but
 allow consequent correct balancing of equation with 2 moles of
 ammonia)

 (1–)butylamine

 (credit 1–aminobutane and butyl–1–amine)
 (award QoL mark for correct spelling)

M1: uv light/sunlight

OR

T = 450 °C to 1000 °C;

(do not credit “high temperature”)
(ignore references to pressure or catalyst)
(penalise M1 if aqueous chlorine OR chlorine water)
(credit M1 if the condition appears over the arrow of the initiation
step)

M2: Cl₂ → 2Cl⁻;

(credit correct half arrows, but penalise (once in the question) the
use of double headed arrows)

M3: C₂H₆ + Cl⁻ → CH₃CH₂⁻ + HCl;

(credit CH₃CH₃ for ethane and C₂H₅⁻ for the ethyl radical)

M4: CH₃CH₂⁻ + Cl₂ → C₂H₅Cl + Cl⁻;
M5: \[\text{CH}_3\text{CH}_2\cdot + \text{CH}_3\text{CH}_2\cdot \rightarrow \text{C}_4\text{H}_{10}\cdot; \]

(penalise the absence of dots once only in this question)

(penalise subsequent ionic reactions as contradictions for each reaction contradicted)

(if neither M3 nor M4 scored, allow \[\text{CH}_3\text{CH}_2\cdot + \text{Cl}\cdot \rightarrow \text{C}_2\text{H}_5\text{Cl} \] for one mark)

(a) \[\text{F}_2 \rightarrow 2\text{F}\cdot \]

\[\text{CH}_4 + \text{F}\cdot \rightarrow \cdot\text{CH}_3 + \text{HF} \]

1

\[\cdot\text{CH}_3 + \text{F}_2 \rightarrow \text{CH}_3\text{F} + \text{F}\cdot \]

1

\[\cdot\text{CH}_3 + \text{F} \cdot \rightarrow \text{CH}_3\text{F} \]

1

OR \[2\cdot\text{CH}_3 \rightarrow \text{C}_2\text{H}_6 \]

(allow credit on this occasion for \[2\text{F}\cdot \rightarrow \text{F}_2 \])

(penalise incorrect symbol Fl, once only)

(penalise absence of radical dot once only)

(b) \[\text{CH}_3\text{F} + 3\text{F}_2 \rightarrow \text{CF}_4 + 3\text{HF} \]

1
(a) (i) An appropriate alkene; \(\text{CH}_3\text{CH}_2\text{CHCH}_2 \) or \((\text{CH}_3)_2\text{CCH}_2\)

Isomer 1

Isomer 2

Position isomerism

Mechanism

electrophilic attack and electron shift to Br (Unless H\(^+\) used)

carbocation

reaction with carbocation

[Allow mechanism marks for the alkene \(\text{CH}_3\text{CHCHCH}_3 \)]
[Allow one mark if mechanism for minor product given]

(ii) An appropriate carbonyl; \(\text{CH}_3\text{CH}_2\text{CHO} \)

Mechanism nucleophilic attack and electron shift to O

anion intermediate

reaction with anion

[Allow mechanism marks for the carbonyl \((\text{CH}_3)_2\text{CO} \)]

Isomer 1

Isomer 2

Optical isomerism

NB Isomer structures must be tetrahedral

NB Penalise “stick” structures once in part (a)
(b) QoL
Large charge on carbonyl carbon atom due to bonding
to O and Cl

Nucleophiles have electron pairs which can be donated

Equation Species

Balanced

(a) (i) Electrophilic addition

(Both words required)

(ii) M1 the reaction to form 1-bromopropane goes via the primary
carbocation OR 1° carbocation

OR via \(\mathrm{CH}_3\mathrm{CH}_2\mathrm{CH}_3^- \)

M2 primary carbocations are less stable than secondary carbocations

(Credit converse arguments for M1 and M2 i.e. the reaction to form
2-bromopropane goes via the secondary carbocation, M1, and
secondary carbocations are more stable than primary carbocations, M2)

(Accept the use of “carbonium ions” as an alternative to
carbocation)

(b) M1 NaOH OR KOH OR correct name

M2 aqueous or solution in water (ignore heat, reflux etc.)

(Penalise M1 for hydroxide ion alone, but mark on and credit M2)

(Credit M2 ONLY for \(\mathrm{H}_2\mathrm{O} \) as reagent and heat / warm / \(T=50 \) to
\(100^\circ\mathrm{C} \))

(NaOH(aq) scores M1 and M2 provided it is not contradicted)

(Penalise M2 if NaOH(aq) followed by concentrated or ethanol)

(Penalise M1 and M2 if followed by acid)
(c) Ethanolic OR alcoholic OR CH₃CH₂OH / CH₃OH solvent OR aqueous ethanol/alcohol OR higher temperature (must be comparative) (Ignore heat or heat under reflux) (Credit part (c) independently from part (b)) (Penalise “ethanoic”)

(d) (i) Secondary OR 2°

(ii) CH₂=CH₂ → CH₃C⁺CH₃
 H−OSO₄OH
 M1 arrow from double bond to H of H – O bond
 M2 arrow from bond to oxygen atom to show H – O bond breakage
 M4 arrow from lone pair of electrons to carbon atom of carbocation (Penalise M1 if arrow goes to H₂SO₄ or to formal positive charge on H, but ignore partial charges on sulphuric acid unless wrong)
 (Credit M2 for H⁺ ion)
 (For M4, accept negative charge anywhere on the ion)

(iii) Catalyst ONLY
 (Ignore homogeneous, heterogeneous)

(a) (i) (Free) radical substitution
 (Both words needed)

(ii) M1 initiation ONLY
 M2 ultra-violet light OR sunlight OR 1000°C ≥ T ≥ 450 °C
 (Ignore reference to temperature if included with uv light)
 (Penalise “high temperature” for M2)

(iii) \(2\dot{\text{CH}}₃ \rightarrow \text{C}_2\text{H}_6 \)
 (OR CH₃CH₃ as alternative to C₂H₆)

(iv) CH₃Br + Br₂ → CH₂Br₂ + HBr
(b) (i) **Electron pair donor**
OR species with an electron pair able to form a covalent bond.

(ii) Methylamine

(Credit “aminomethane”)

(iii)

\[
\begin{array}{c}
\text{CH}_3 \text{Br} \xrightarrow{\text{NH}_3} \text{CH}_3 \text{N}^+ \text{II} \hspace{1cm} \text{M3 structure}
\end{array}
\]

- M1 arrow to show breakage of C – Br bond
- M2 arrow from lone pair on N of NH\(_3\) to form bond with C
- M4 arrow from bond of N – H to N atom of CH\(_3\)NH\(_3\) +

(Ignore partial charges on haloalkane but penalise if incorrect)

(Accept CH\(_3\)N\(_3\)H\(_3\) for M3)

(Full credit for carbocation mechanism; M1 for C – Br bond breakage and M2 for lone pair attack on carbocation)

(Second mole of ammonia not essential to mechanism for full credit)

(a) (i) **UV light OR sunlight OR T \(\geq 450^\circ C\)**

(NOT high T)

(ii) (free) **radical substitution**

(iii) **CCl\(_4\)** OR named
(b) (i) $\text{CH}_3\text{Cl} + \text{KCN} \rightarrow \text{CH}_3\text{CN} + \text{KCl}$ \(1\)

(ii) **nucleophilic substitution** \(1\)

(iii) C–Br bond is weaker (than C–Cl bond)

OR C–Br bond enthalpy is less than C–Cl \(1\)

Ignore electronegativity

(c) CH$_3$COOH OR ethanoic acid \(1\)

(d) (i) \(\delta^+\) C–\(\delta^-\) OR C–Cl is polar \(1\) OR C atom is electron deficient / \(\delta^+\)

(ii) methylamine \(1\) only

(iii) \(S_n1\) scores full marks

![Diagram]

(a) **Reaction 2**: NaOH OR KOH \(1\) M1 alcohol (ic) OR ethanol (ic)\(1\) M2

ignore heat

Condition mark linked to correct reagent but award M2 if OH$^-$ or base or alkali mentioned

Reaction 3: concentrated H$_2$SO$_4$ OR H$_3$PO$_4$ M1 \(1\) heat \(1\) M2

OR 150°C - 200°C

Condition mark linked to correct reagent but award M2 if H$_2$SO$_4$ or H$_3$PO$_4$, but not concentrated

Penalise reagent and condition if dilute H$_2$SO$_4$ / H$_3$PO$_4$
(b) **Mechanism:**

\[\text{HO} + \text{M}^+ \xrightarrow{(1)} \text{H} \quad \text{M}^+ \quad \text{H} \xrightarrow{(1)} \text{H} \]

\[\text{H} \quad \text{C} \quad \text{H} \quad \xrightarrow{(1)} \quad \text{H}_2\text{C} = \text{CH}_2 + \text{H}_2\text{O} + \text{Cl}^- \]

Award M3 (Cl^-) independently

M1 and M2 must be to / from correct places

E1 mechanism possible in which M2

\[\text{H} \quad \text{H} \]

\[\text{H} \quad \text{C} \quad \text{H} \]

Name: of mechanism = elimination (1)

NOT dehydrohalogenation

Ignore “base” OR “nucleophilic” before elimination

Reason: Reaction 2 has (very) low yield (1)

QoL OR chloroethane has to be made (from ethane)

OR chloroethane is expensive

OR chloroethane is not readily available
(c) **Mechanism:**

\[
\begin{align*}
\text{M1} (1) & \quad \text{H}_2\text{C} = \text{CH}_2 + \text{H} & \quad \text{H} \quad (\text{OR} \ \text{H}_2\text{SO}_4) \\
\downarrow & \quad \text{H} \quad \text{H} & \quad \text{H} \quad \text{H} \\
\text{M4} (1) & \quad \text{H} \quad \text{H} & \quad \text{H} \quad \text{H} \\
\end{align*}
\]

\(\text{H}^+ + \text{H}_2\text{C} = \text{CH}_2 \rightarrow \text{H} \quad \text{H} \quad \text{H} \quad \text{H} \quad (+ \ \text{H}_2\text{O})\)

\(\text{(M3 could be awarded on protonated alcohol)}\)

Name of mechanism = elimination (1)

NOT dehydration alone

Reason: Ethanol could come from (fermentation of) **renewable**

QoL sugars / glucose / carbohydrates / sources (1)

(a) (i) \(\text{CHCl}_3 + \text{Cl}_2 \rightarrow \text{CCl}_4 + \text{HCl} (1)\)

(ii) \(\text{UV light / sunlight OR high T OR T} \geq 500^\circ\text{C} (1)\)

\(\text{maxT} = 1000^\circ\text{C}\)

NOT heat / light

Ignore pressure
(b) Initial step: \(\text{Cl}_2 \rightarrow 2\text{Cl} \cdot \) (1)

Condition could be on first equation arrow

First propagation step: \(\text{CHCl}_3 + \text{Cl} \cdot \rightarrow \cdot \text{CCl}_3 + \text{HCl} \) (1)

Second propagation step: \(\cdot \text{CCl}_3 + \text{Cl}_2 \rightarrow \text{CCl}_4 + \text{Cl} \cdot \) (1)

A termination step: \(\cdot \text{CCl}_3 + \text{Cl} \cdot \rightarrow \text{CCl}_4 \) (1)

OR \(2\cdot \text{CCl}_3 \rightarrow \text{C}_2\text{Cl}_6 \)

Not \(2\text{Cl} \rightarrow \text{Cl}_2 \)

Ignore additional termination steps

(a) (i)

<table>
<thead>
<tr>
<th>Isomer 1</th>
<th>either order</th>
<th>Isomer 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[credit: \(\text{H} = \text{C} \rightarrow \text{H} \) and \(\text{H} = \text{C} \rightarrow \text{H} \)]

(ii) restricted rotation OR no rotation OR cannot rotate (1)
(b) (i) Mechanism:

\[
\begin{align*}
\text{HO}^{-} & \quad \text{(1)} \\
\text{CH}_3-\text{CH}-\text{CH}_2 & \quad \text{M1} \\
\text{Cl} & \quad \text{(1)} \\
\text{M2} & \quad \text{OH} \\
\end{align*}
\]

Credit M1 for

\[
\begin{align*}
\text{HO}^{-} & \quad \text{(1)} \\
\text{CH}_3-\text{CH}-\text{CH}_3 & \quad \text{M1} \\
\end{align*}
\]

M1 and M2 independent

Curly arrows must be from a bond or a lone pair

Do not penalise sticks

Penalise M1 if NaOH precedes (penalise this once)

Penalise incorrect δ^+ for M2

Penalise $+\delta^-$ on C atom for M2

Only allow M1 for incorrect haloalkane

Role of the hydroxide ion: nucleophile (1)

- electron pair donor
- lone pair donor

NOT nucleophilic substitution
Mechanism:

Only allow M1 and M2 for incorrect haloalkane unless RE on (i) + charge on H on molecule, penalise M1

M3 independent

M2 must be to correct C–C

M1 must be correct H atom

Credit M1 and M2 via carbocation mechanism

No marks after any attack of C \(\Theta \) by OH\(^{-} \)

Role of the hydroxide ion: base (1)

- proton acceptor
- accepts H\(^{+} \)
If wrong carbocation, lose structure mark
If wrong alkene, lose structure mark
Can still score \(\frac{3}{4} \) i.e. penalise M3
Penalise M2 if polarity included incorrectly
no bond between H and Br
bond is shown as \(\xrightarrow{\text{H}} \) or \(\xrightarrow{\text{Br}} \).

(ii) \(\text{CH}_3\text{CH}_2\text{CH}_3 \) \(\text{(l)} \)
credit secondary carbocation here if primary carbocation has been used in (i)
Ignore attack on this carbocation by \(\text{Br} \).

(b) (i) Structure:

\[
\begin{align*}
\text{} & \text{OH} \\
\text{H}_3\text{C} & \text{CH} \text{CH}_3 \quad \text{(l)} \quad \left[\text{insist on } \text{C} \text{OH bond} \right]
\end{align*}
\]

No credit for propan-1-ol even when named correctly
Credit propane-2-ol

Name: propan-2-ol (1)
Not 2-hydroxypropane
(ii) **Name of mechanism:** nucleophilic substitution (1) (both words) (NOT S_N1 or S_N2)

Mechanism:

\[
\begin{align*}
M_1 & \xrightleftharpoons[1]{\text{arrow}} Br \\
\text{H}_3\text{C} & \xrightarrow{\text{HO}} \text{CH} - \text{CH}_3 \rightarrow \text{CH}_3\text{CH(OH)}\text{CH}_3 + \text{Br}^-
\end{align*}
\]

penalise incorrect polarity on C-Br (M1)

Credit the arrows even if incorrect haloalkane

If S_N1, both marks possible

\[\text{i.e. } M_1 \xrightarrow{\text{arrow from M2}} \text{HO} \rightarrow \text{correct carbocation}\]

\[\text{[12]}\]

(c) (i) **elimination** (1)

Ignore nucleophylic elimination

Penalise electrophilic elimination

(ii) **base** (1)

OR proton acceptor

NOT nucleophile (base)

\[\text{[1]}\]
Penalise missing • once only

(i) \(\text{Cl}_2 \rightarrow 2 \text{Cl}^\bullet \) (1)

(ii) \(\text{CH}_2\text{Cl}_2 + \text{Cl}_2 \rightarrow \text{CHCl}_3 + \text{HCl} \) (1)

(iii) \(\text{CH}_2\text{Cl}_2 + \text{Cl}^\bullet \rightarrow \text{CHCl}_2^\bullet + \text{HCl} \) (1)
\(\text{CHCl}_2^\bullet + \text{Cl}_2 \rightarrow \text{CHCl}_3 + \text{Cl}^\bullet \) (1)

Can reverse order

(iv) Effect on rate: increases (1) If decrease given C.E zero marks

Explanation: more Cl\(^\bullet\) radicals formed (1)

More Cl atoms, more Cl—Cl or Cl\(_2\) bonds broken, more Cl\(_2\) have \(E_A\), increased rate of Cl\(^\bullet\) production

23

(a)

May circle 4 C’s separately

(b) \(\text{H}^+\) can score M1 + M2

\(\text{H}_2\text{Sc}_4 \) only M1 - see diagram not M2

\(\text{H}^+\) or \(\text{H}^+\)

Ignore \(\delta^+\) and \(\delta^-\) unless wrong

(c) Reagent: H\(_2\)O or water **OR steam, OR dilute sulphuric acid** (1)

Condition: heat, or warm, or boil or reflux [50-100°C] (1)

Name of compound C: 2-methylbutan-2-ol (1)

Allow 2-methylbutan-2-ol

Penalise hydroxy-2-methylbutane and 2-methylbut-2-ol once only in the paper
Identity of alcohol D: 2-methylbutan-1-ol (1), OR its structure, could describe structure

Explanation: C formed via t-carbocation; D via p-carbocation, (1) tertiary more stable than primary (1)
If have wrong carbocation can still score stability mark

Condition: U.V. light or sunlight or 450°C or high temp (1)
Explanation: U.V. light etc. provides energy to break(\(\text{Cl-Cl}\)) bond (1) Do not accept reference to \(E_a\) or wrong bond or 'to make Cl radicals'

(Free) radical substitution (1)

Step 1: initiation (1)
Step 2: propagation (1)
Step 3: termination (1)
Any order
Don't be too harsh on spelling

Equation 1: \(\text{CH}_3 + \text{Cl}^* \rightarrow \text{CH}_2\text{Cl}^* + \text{HCl}\) (1)
Equation 2: \(\text{CH}_2\text{Cl}^* + \text{Cl}_2 \rightarrow \text{CH}_2\text{Cl}_2 + \text{Cl}^*\) (1)
or \(\text{CH}_2\text{Cl}^* + \text{Cl}^* \rightarrow \text{CH}_2\text{Cl}_2\)
Mark equ independently any order

\(\text{CH}_2\text{Cl}^* + \text{CH}_3^* \rightarrow \text{CH}_3\text{CH}_2\text{Cl}\) (1)
or \(\text{CH}_3\text{CH}_2^* + \text{Cl}_2 \rightarrow \text{CH}_3\text{CH}_2\text{Cl} + \text{Cl}^*\)
or \(\text{CH}_3\text{CH}_2^* + \text{Cl}^* \rightarrow \text{CH}_3\text{CH}_2\text{Cl}\)
Equ must have \(\text{CH}_3\text{CH}_2\text{Cl}\) as product
Accept \(\text{C}_2\text{H}_5\text{Cl}\)
Penalise absence of \(\cdot\) once only
(a) Name of mechanism: nucleophilic substitution (1)

Mechanism:

\[
\begin{align*}
\text{CH}_3 & \quad \text{H} \\
\text{CH}_3-\text{C} & \quad \text{Br} \\
\rightarrow & \\
\text{CH}_3-\text{C} & \quad \text{H} \\
\rightarrow & \\
\text{H} & \quad \text{N} \\
\rightarrow & \\
\text{H} & \quad \text{N} \\
\rightarrow & \\
\text{H} & \quad \text{NH}_3 \\
\end{align*}
\]

(M3 is for correct carbocation - if used wrong halogenoalkane lose M3)

Marks S_N1 using same points

\[
\begin{align*}
\text{CH}_3 & \quad \text{H} \\
\text{CH}_3-\text{C} & \quad \text{Br} \\
\rightarrow & \\
\rightarrow & \\
\text{H} & \quad \text{N} \\
\rightarrow & \\
\text{H} & \quad \text{N} \\
\rightarrow & \\
\text{H} & \quad \text{NH}_3 \\
\end{align*}
\]

Role of potassium hydroxide: Base (1)

Mechanism:

\[
\begin{align*}
\text{CH}_3 & \quad \text{H} \\
\text{CH}_3-\text{C} & \quad \text{Br} \\
\rightarrow & \\
\rightarrow & \\
\text{H} & \quad \text{C} \\
\rightarrow & \\
\text{H} & \quad \text{OH}^- \\
\rightarrow & \\
\text{H} & \quad \text{OH}^- \\
\end{align*}
\]

Mark E1 using same points

\[
\begin{align*}
\text{CH}_3 & \quad \text{H} \\
\text{CH}_3-\text{C} & \quad \text{C} \\
\rightarrow & \\
\rightarrow & \\
\text{H} & \quad \text{C} \\
\rightarrow & \\
\text{H} & \quad \text{OH}^- \\
\rightarrow & \\
\text{H} & \quad \text{OH}^- \\
\end{align*}
\]