Learning Objectives	Keypoints
Describe how some	In some reactions, the products can be changed back into the
reactions are	reactants. These reactions are called reversible reactions.
reversible	The symbol \rightleftharpoons is used instead of an arrow (\rightarrow) when writing chemical
	equations for reversible reactions.
	In a reversible reaction, one of the reactions will be exothermic and the
	other will be endothermic.
Describe some	Two examples of reversible reactions are:
examples of	hydrated copper sulfate < anhydrous copper sulfate + water
reversible reactions	$N_2 + 3H_2 \rightleftharpoons 2NH_3$
Describe the	A closed system is one where no chemicals can leave or enter, for
conditions under	example, a stoppered flask.
which dynamic	A reversible reaction will reach equilibrium in a closed system. Equilibrium
equilibrium occurs	means that the rate of the forward and backwards reactions are equal.
	This means that the concentrations of the reactants and products will
	remain constant (but they will not be the same as each other).
	This is called a dynamic equilibrium because both the forward and
	backward reactions are still happening.
Predict the effect of	The equilibrium position is a way of representing the proportion of
changing reaction	products and reactions in an equilibrium.
conditions on	If the equilibrium position is on the left, then we have more reactants
equilibrium position	than products. If the equilibrium position is on the left, then we have less
	reactants than products.
	Using a catalyst does not affect the equilibrium position.
	We can change the equilibrium position by changing the conditions of a
	reaction. Le Chatelier's principle states that 'when a change is made to
	a reaction at equilibrium, the position of equilibrium moves to oppose
	the change'. This means that:
	Increasing the temperature favours the endothermic reaction and
	decreasing the temperature favours the exothermic reaction.
	Increasing the concentration of the reactants, or reducing the
	concentration of the products, will favour the products side of the
	equation.
	Increasing the concentration of the products, or reducing the
	concentration of the reactants, will favour the reactants side of the
	equation.
	For a reaction involving a gas, increasing the pressure will favour the side
	with the fewest moles of gas.
Explain appropriate	The equilibrium yield is how much of a product is made at equilibrium.
conditions to	In industrial chemistry, conditions will be chosen to give as high an
produce a	equilibrium yield as possible. However, sometimes, compromise
particular product	conditions are used.
using a reversible	For example, if a high pressure is needed to give a high equilibrium yield
reaction	then a compromise pressure will be used as high pressure is expensive,
	needs specialist equipment and uses a lot of energy.
	If a low temperature is needed to give a high equilibrium yield, then a
	compromise temperature will be used as a low temperature will give a
	low rate of reaction.