Learning Objectives	Keypoints
Explain what is meant by rate of	The rate if reaction is a measure of how quickly reactants are
reaction	made into products in a chemical reaction. Rate = amount of reactants used / time taken
	or
	rate = amount of product formed / time taken
Suggest practical methods for	If one of the products is a gas then the amount of product
determining rates	can be measured by measuring the volume of gas produced
	 by using either a gas syringe, upward delivery over water or a mass balance.
	If no gases are produced, then the rate of reaction can be
	calculated by measuring the time taken for a solid to be used
	up.
Interpret rate of reaction graphs	If the volume of gas is plotted on the y axis and the time is
	plotted on the x axis then the line will be a curve with the steepest gradient at the start.
	To calculate the mean rate of reaction from a graph pick two
	points on the graph. The gradient is the change in volume
	divided by the change in time.
	To calculate the rate of reaction at a specific time, known as the instantaneous rate of reaction, draw a tangent to the
	curve and measure the gradient of the tangent (the change
	in volume divided by the change in time)
Describe and explain the effect	In order for reactions to occur the reactant particles need to
of changes on the rate of	collide with each other. If the particles which collide do not
reaction	have enough energy, known as the activation energy, then they will not react and will bounce back from the collision
	unchanged.
	If the particles which collide have the activation energy or
	greater then they will react.
	If there are more frequent collisions then the rate of reaction will increase.
	If the particles which collide have more energy, or if the
	activation energy is lowered, then there will be more
	successful collisions.
Describe and explain the effect	A higher concentration of solution means that there will be
of changes in concentration of solutions on the rate of reaction	more particles of solute in the same volume. This will lead to more frequent collisions so the rate of reaction will increase.
Describe and explain the effect	A higher pressure means that there will be more particles of
of changes in pressure of	gas in the same volume. This will lead to more frequent
reacting gases on the rate of	collisions so the rate of reaction will increase.
reaction Describe and explain the effect	Smaller pieces of solid mean that the solid has a higher
of changes in the size of pieces	surface area. This means that more of the reactant particles
of a reacting solid on the rate of	are exposed so there are more frequent collisions. This
reaction	increases the rate of reaction.
Describe the characteristics of	A catalyst is a chemical which speeds up the rate of a
catalysts and their effect on rates of reaction	reaction without being used up or altered itself. Catalysts are specific to the reaction, so a chemical that
	catalyses one reaction may not catalyse another reaction.
Recall that enzymes act as	Enzymes are biological catalysts that speed up reactions in
catalysts in biological systems	biological systems.
Explain catalytic action in terms	A catalyst lowers the activation energy, which leads to more
of activation energy	successful collisions. This increases the rate of reaction.