2

Hydrogen is produced by the reaction of methane with steam. The reaction mixture reaches a state of dynamic equilibrium.

$$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g) \qquad \Delta H = +206 \text{ kJ mol}^{-1}$$

Some enthalpy data is given in the table.

Bond	C–H	O–H	H–H	C≡H
Bond enthalpy / kJ mol ⁻¹	413	463	436	To be calculated

Use the information in the table and the stated enthalpy change to calculate the missing bond enthalpy.

Α	234	0
в	1064	0
С	1476	0
D	1936	0

(Total 1 mark)

In which one of the following reactions is the standard enthalpy change equal to the standard enthalpy of formation of lithium fluoride?

A
$$Li(g) + F(g) \rightarrow LiF(s)$$

- $\mathbf{B} \qquad \mathsf{Li^+}(g) + \mathsf{F^-}(g) \to \mathsf{LiF}(s)$
- **C** $Li^+(aq) + F^-(g) \rightarrow LiF(s)$
- **D** $\text{Li}(s) + \frac{1}{2}F_2(g) \rightarrow \text{LiF}(s)$

(Total 1 mark)

This question is about the reaction given below.

 $CO(g) + H_2O(g) \longrightarrow CO_2(g) + H_2(g)$

Enthalpy data for the reacting species are given in the table below.

Substance	CO(g)	H ₂ O(g)	CO ₂ (g)	H ₂ (g)
∆ <i>H</i> r [⊕] / kJ mol ^{−1}	-110	-242	-394	0

The standard enthalpy change for this reaction of carbon monoxide and steam is

A +42 kJ mol⁻¹

3

4

- B −42 kJ mol⁻¹
- **C** +262 kJ mol⁻¹
- **D** –262 kJ mol⁻¹

(Total 1 mark)

The data below refer to the industrial production of nitric acid from ammonia.

Reaction 1
$$4NH_3(g) + 5O_2(g) \iff 4NO(g) + 6H_2O(g)$$
 $\Delta H^{\odot} = -909 \text{ kJ mol}^{-1}$ Reaction 2 $2NO(g) + O_2(g) \iff 2NO_2(g)$ $\Delta H^{\odot} = -115 \text{ kJ mol}^{-1}$ Reaction 3 $3NO_2(g) + H_2O(l) \iff 2HNO_3(aq) + NO(g)$ $\Delta H^{\odot} = -117 \text{ kJ mol}^{-1}$

The direct oxidation of ammonia to nitrogen dioxide can be represented by the equation

 $4NH_3(g)+7O_2(g)\rightarrow 4NO_2(g)+6H_2O(g)$

for which the standard enthalpy change, in kJ mol⁻¹, is

- **A** -1139
- **B** -1024
- **C** –794
- **D** -679

(Total 1 mark)

Using the information below, answer this question.

 $Fe_2O_3(s) + 3H_2(g) \rightarrow 2Fe(s) + 3H_2O(g) \quad \Delta H^{\oplus} = +96 \text{ kJ mol}^{-1}, \ \Delta S^{\oplus} = +138 \text{ J K}^{-1} \text{ mol}^{-1}$

	Fe ₂ O ₃ (s)	H ₂ (g)	Fe(s)
$\Delta H_{\rm r}^{ullet}$ / kJ mol ⁻¹	-822.0	0	0
ΔS^{\odot} / J K ⁻¹ mol ⁻¹	90.0	131.0	27.0

The standard enthalpy of formation of steam is

A +286 kJ mol⁻¹

5

- **B** +242 kJ mol⁻¹
- **C** -242 KJ mol⁻¹
- **D** -286 kJ mol⁻¹

(Total 1 mark)

Mark schemes

