Chapter 2 Amount of substance – GCSE Assumed Knowledge

Learning Objectives	Keypoints
Use names and chemical	Elements – the symbol is found in the periodic table. For most elements the formula is just the chemical symbol. Some elements are
symbols to write the formulae	diatomic which means they are found as molecules containing two atoms of the same element. This means that the formula
of elements and simple	contains a subscript 2 e.g. N ₂ , O ₂ , H ₂ , Br ₂ , Cl ₂ , I ₂ , F ₂ .
covalent compounds	Simple covalent compounds show the number and type of each atom e.g. CH₄ contains one carbon and 4 hydrogens.
Use the formula of common	Common ions are: Hydrogen H ⁺ , ammonium NH4 ⁺ , hydroxide OH ⁻ , nitrate NO3 ⁻ , carbonate CO3 ²⁻ , sulfate SO4 ²⁻ . Metals from groups
ions to deduce the formulae	1,2 and 3 form positive ions with the same charge as the group number. Non-metals from groups 5,6 and 7 form negative ions with
of ionic compounds	the same charge as 8 - the group number. Transition metals can have different charges - shown in their name by(I)=+1,(II)=+2,(III) =
	+3,(IV)=+4 and(V)=+5. Ionic compounds are neutral (have no overall charge). This means that there needs to be an equal number
	of positive and negative charges e.g. calcium is Ca ²⁺ , hydroxide is OH ⁻ . To be neutral we need to have 2OH ⁻ ions i.e. Ca(OH) ₂ .
Recall and use the law of	Atoms cannot be created or destroyed in a chemical reaction.
conservation of mass	This means that the total mass of the reactants must equal the total mass of the products
Write and balance chemical	Since mass is always conserved in a chemical reaction, the number of each type of atom needs to be the same on both the left
equations	hand side and the right hand side of the equation
Use state symbols	(s) means solid, (I) means liquid, (g) means gas and (aq) means aqueous / dissolved in water
Explain the meanings of the	A mole is a unit for the amount of a substance. A mole contains 6.02 x 10 ²³ entities (either atoms, molecules or formula units).
terms 'mole' and 'avagadro	One mole of an element will have the same mass in g as its relative atomic mass.
constant'	One mole of a compound will have the same mass in g as its relative formula mass
Calculate the mass of a mole	For a monoatomic element: Number of moles = (mass in g) ÷ relative atomic mass
of a substance	For a compound or molecule: Number of moles = (mass in g) ÷ relative formula mass
Use a balanced equation to	The masses of all the reactants must add up to same as the masses of all the products.
calculate masses of reactants	
and products	
Explain the effect of a limiting	A limiting reactant is a reactant present in an amount less than that needed to react completely with the other reactant in a
reactant	chemical reaction. This means that it is used up first. When all of the limiting reactant has been used up the reaction will stop.
	A reactant which is in excess is one that is present in an amount greater than that needed to react with the other reactant.
	Once the reaction has finished there will still be some of the reactant that was in excess left over.
Calculate the stoichiometry	The stoichiometry is the relative amounts of each substance involved in a chemical reaction.
of an equation	If you know the number of moles of the reactants and products that take part in the reaction then you can work out the
	stoichiometry of the balanced equation.
Calculate the theoretical	The limiting reactant is the one that gets used up and stops the reaction from proceeding further.
yield of a product from a	The other reactant is in excess .
given mass of reactant.	The yield of a product is the mass of that product made in a chemical reaction.
	The theoretical yield is the maximum amount you could make if everything went perfectly. The theoretical yield is calculated from
	the amount of limiting reactant used. The reactant in excess has no effect on the theoretical yield.
Calculate the percentage	Percentage yield = (actual yield / theoretical yield) x 100
yield of a product	The percentage yield may be reduced if by-products are made, if the reaction is reversible or if mass is lost during the experiment for
	example on filter paper or if the reaction mixture is transferred from one container to another, some might remain in the original
	container.
	A high percentage yield is important because it reduces cost and doesn't waste starting materials.

For more revision resources go to www.drwainwright.weebly.com

Chapter 2 Amount of substance – GCSE Assumed Knowledge

Define the atom economy of	The atom economy is a measure of how many atoms in the reactant are turned into useful products.
a reaction	A high atom economy is desirable as it reduces the production of unwanted products, it makes the process more sustainable and it
	maximises profit.
Calculate the atom	Atom economy = (sum of the Mr of the desired product/sum of the Mr of all products) x 100
economy of a reaction	
Explain why a particular	The factors that need to be considered when choosing the reaction pathway for making a particular substance are:
reaction pathway is chosen	Percentage yield
to produce a specified	Atom economy
product, using appropriate	Whether the by-product is useful, or difficult to dispose of
data	Rate of reaction
	Equilibrium position if the reaction is a reversible one
Calculate concentration of	Concentration in mol/dm ³ = amount of solute in moles / volume of solution in dm ³
solution in mol/dm ³	To convert cm ³ to dm ³ divide by 1000
	To convert dm ³ to cm ³ multiply by 1000
Explain the relationship	Concentration in g/dm ³ = amount of solute in g / volume of solution in dm ³
between concentration of	To convert concentration from mol/dm ³ to g/dm ³ multiply the concentration by the Mr
solution, mass of solute and	To convert concentration from g/dm ³ to mol/dm ³ divide the concentration by the Mr
volume of solution	
Describe how to carry out an	A known volume of alkali is added to a conical flask using a pipette and pipette filler. A few drops of indicator such as
acid-alkali titration	phenolphthalein is added. Acid is then added from a burette. When the indicator changes colour (called the end-point) the alkali
	has been neutralised and the volume added is recorded.
	A conical flask is used rather than a beaker as it is easier to swirl without losing liquid via splashing. The acid is normally added to the
	burette as strong alkalis can react with the glass burette. A mixed indicator such as universal indicator is not used in a titration as it
	would give a gradual colour change, whereas a single indicator gives a sudden colour change.
	A pipette is used to add the alkali rather than a measuring cylinder as a pipette is more accurate.
	Results should be repeated until they are concordant (within 0.1ml of each other). To ensure titrations are repeatable, the flask
	should be swirled whilst the acid is added to ensure the reactants are mixed together. A rough titre should also be done first – this
	gives a rough idea of how much needs to be added so that the next titrations can be done more slowly near the end-point.
Carry out titration	A titration will involve an acid solution and an alkali solution. You will normally know the volumes of both solutions but only the
calculations involving	concentration of one of them. This will allow you to calculate the missing concentration.
concentrations and volumes	If the ratio of acid to alkali in the balanced equation is 1:1 then you can use Cacid X Vacid = Calkali X Valkali
Describe the relationship	One mole of gas occupies 24dm ³ at room temperature and pressure
between molar amounts of	
gases and their volumes	
Calculate the volumes of	Amount in moles = volume in dm ³ / 24
gases involved in reactions	
using the molar gas volume	