1. This question is about rates of reaction.

Mark investigates the reaction between sodium thiosulfate and hydrochloric acid at different temperatures.

Look at how Mark does the experiment.

1 He measures $50 \mathrm{~cm}^{3}$ of sodium thiosulfate into the conical flask and heats it to the required temperature. He records the temperature.
2 He takes the flask off the tripod and gauze and places it on the bench.
3 He adds $5 \mathrm{~cm}^{3}$ of hydrochloric acid and then places the flask on the cross.
4 He times how long it takes for the cross to disappear.

How should Mark improve his method?

Explain your answer.
\qquad
\qquad
2. This question is about rates of reaction.

Julie and Trevor investigate the reaction between marble chips (calcium carbonate) and dilute hydrochloric acid.

They use 20.0 g of marble chips and $40 \mathrm{~cm}^{3}$ of dilute hydrochloric acid.

The temperature of the acid is $25^{\circ} \mathrm{C}$.

Look at the diagram. It shows the apparatus they use.

They measure the mass every 50 seconds until the reaction stops.

They calculate the loss in mass.

Look at the graph on the next page.

How long does it take for the reaction to stop?
seconds [1]
3. Harneet investigates the reaction of marble chips with hydrochloric acid.

The total mass of the flask and its contents decreases during the experiment.

Harneet records this decrease every 4 minutes.

She does the experiment with large marble chips.

She repeats the experiment with small marble chips.

Look at her results.

Time in minutes	Loss in mass in g	
	Large marble chips	Small marble chips
0	0	0
4	0.4	0.8
8	0.8	1.4
12	1.2	1.6
16	1.5	1.7
20	1.7	1.7

(i) Look at the results for small marble chips.

How long does it take for the reaction to finish?
answer \qquad minutes
(ii) Harneet wants to choose the best way to present her results.

How should she present her results?

Choose from the list.

bar chart
histograph
line graph
pie chart

4. Magnesium, Mg, reacts with hydrochloric acid, HCl .

Hydrogen, H_{2}, and magnesium chloride, MgCl_{2}, are made.

Peter adds 0.10 g of magnesium powder to $25.0 \mathrm{dm}^{3}$ of dilute hydrochloric acid.

The mean (average) rate of this reaction is $50 \mathrm{~cm}^{3}$ of hydrogen per minute.
(i) Estimate the total volume of hydrogen made in the first 3 minutes.
volume of hydrogen $=$ cm^{3}
(ii) Peter repeats this experiment but uses magnesium lumps instead of powder.

The average rate of reaction is $10 \mathrm{~cm}^{3}$ of hydrogen per minute.

Use the reacting particle model to explain why
\qquad
\qquad
\qquad

5(a). A student investigates the rate of reaction between marble chips and hydrochloric acid.

Both experiments use $50 \mathrm{~cm}^{3}$ of hydrochloric acid and an excess of marble chips.

He measures the total mass of carbon dioxide given off for different sizes of marble chips.

Look at his results.

Time (minutes)	Total mass of carbon dioxide given off (g)	
	Large marble chips	Small marble chips
0	0.0	0.0
4	0.4	0.8
8	0.8	1.4
12	1.2	1.6
16	1.5	1.7
20	1.7	1.7
24	1.7	1.7

The student has plotted his results for the large marble chips on the graph.
(i) Plot the results for the small marble chips.
(ii) Draw a line of best fit.
(b). Look at the line for the large marble chips.
(i) How long does it take for the reaction to finish?

> Answer = minutes [1]
(ii) What mass of carbon dioxide is given off after 15 minutes?
Answer = ----------------------------------- g [1]
(c). The reaction is faster with small marble chips.

Write down two ways that the graph shows this is correct.

1 \qquad
\qquad

2 \qquad
\qquad
6. A student investigates the rate of reaction between magnesium and hydrochloric acid. The reaction gives off hydrogen gas.

The student wants to investigate how changing the concentration of the hydrochloric acid affects the rate of reaction.

Look at her plan.

```
First experiment
    I will put 0.5 g of magnesium ribbon into the flask.
    I will add \(50 \mathrm{~cm}^{3}\) of hydrochloric acid.
    I will measure how fast the gas is given off.
    Second experiment
    I will put another 0.5 g of magnesium ribbon into the flask.
    I will add \(100 \mathrm{~cm}^{3}\) of the same hydrochloric acid.
    I will measure how fast the gas is given off.
```

Another student thinks that the plan will not work and he does not understand exactly what he has to do.

Suggest how the plan for this investigation can be improved.
\qquad
\qquad
\qquad
\qquad

Mark Scheme

Question		Answer/Indicative content	Marks	Guidance	
1			measure temperature of sodium thiosulfate and acid mixture (1) (because) temperature will be different from sodium thiosulfate solution alone (1) OR place flask on cross before adding acid (1) idea that reaction has started before timing begins / idea that moving flask will increase	2	ALLOW measure temperature of sodium thiosulfate solution when it has been removed from tripod (1) (because) temperature will continue to rise after flask is removed from tripod (1)
2					

Question		Answer/Indicative content	Marks	Guidance		
	ii		$\begin{array}{l}\text { (lumps) have smaller surface area / have } \\ \text { less exposed particles (1) } \\ \text { (lumps) have less collisions (per second) } \\ (1)\end{array}$	$\begin{array}{l}\text { assume answer refers to magnesium } \\ \text { lumps answers must be comparative } \\ \text { allow ora if powder specified }\end{array}$		
ignore references to volume					$\}$	allow ora if powder specified allow lower chance of collisions / less frequent collisions / less successful collisions (1) allow collisions less likely for lumps (1) ignore references to speed e.g. collisions are slower
:---						

Question		Answer/Indicative content	Marks	Guidance
	ii	1.45 (g) \checkmark	$\begin{gathered} 1 \text { (AO } \\ 2.2) \end{gathered}$	ALLOW 1.4 to 1.5 Examiner's Comments Some candidates misread the scale and 1.7 was a popular incorrect response.
C		idea that slope or gradient of line for small chips is (twice as) steep(er) / ORA \checkmark small chips reaction finishes (3 to 5 minutes) before (large chips reaction)/ ORA $\sqrt{ }$	$\begin{gathered} 2(\mathrm{AO} 2 \times \\ 3.1 \mathrm{~b}) \end{gathered}$	IGNORE all points are higher (0 isn't) ALLOW line goes up faster ALLOW finishes earlier / small finishes at 16 and large at 20 ALLOW small chips get to 1.7 before the large chips ALLOW (smaller chips have) given off a larger mass in a named time / earlier Examiner's Comments Many candidates rewrote the stem of the question or answered in terms of the reaction rather than the graphs. Many discussed the points being closer together or further apart or thought that more gas was evolved by the small marble chips. Steepness of the line was the more common correct response and higher ability candidates gained full credit.
		Total	7	

