What is a reversible reaction?	What arrow is used to represent reversible reactions?
If the forward reaction is exothermic, what will the backwards reaction be?	What is meant by equilibrium?
At equilibrium, what is special about the concentrations of the reactants and products?	What is meant by the position of equilibrium?
Equilibrium only occurs in a closed system. What is meant by a closed system?	What is meant by the position of equilibrium being on the left?

٦

Γ

	Where the products can be changed back into the reactants.
Rate of the forward reaction = the rate of the backward reaction	Endothermic
The proportion of products and reactants at equilibrium	They remain the same
There are more reactants than products	Where no chemicals can enter or leave e.g. a stoppered flask

How does using a	
catalyst affect the	What is Le Chatelier's
position of	principle?
equilibrium?	
How does increasing the temperature of a	How does increasing the amount or concentration
reaction affect the	of reactants affect the
position of equilibrium?	position of equilibrium?
How does increasing	
How does increasing the pressure affect	What is meant by the
How does increasing the pressure affect the position of	What is meant by the equilibrium yield?
How does increasing the pressure affect the position of equilibrium?	What is meant by the equilibrium yield?
How does increasing the pressure affect the position of equilibrium? Why is a	What is meant by the equilibrium yield? Why is a
How does increasing the pressure affect the position of equilibrium? Why is a compromise	What is meant by the equilibrium yield? Why is a compromise
How does increasing the pressure affect the position of equilibrium? Why is a compromise temperature	What is meant by the equilibrium yield? Why is a compromise pressure

When a change is made to a reaction at equilibrium, the position of equilibrium moves to oppose the change	It doesn't
It favours the products side of the reaction	It favours the endothermic reaction
How much of a product is made at equilibrium	It favours the side with the fewest moles of gas
High pressure is expensive, uses a lot of energy and needs specialist equipment	A low temperature will give a high yield if the forward reaction is exothermic, but it will also give a slow rate of reaction