1(a). The reversible reaction between carbon dioxide and hydrogen makes methane and water.

$$
\text { carbon dioxide }+ \text { hydrogen } \rightleftharpoons \text { methane }+ \text { water }
$$

In a sealed container this reversible reaction forms a dynamic equilibrium.

What is meant by the term dynamic equilibrium?

Refer to both concentration and rate of reaction in your answer.
\qquad
\qquad
\qquad
(b). * Kayvan investigates the effect of changing the pressure and changing the temperature on this reaction.

$$
\text { carbon dioxide }+ \text { hydrogen } \rightleftharpoons \text { methane }+ \text { water }
$$

The table shows the percentage yield of methane in the equilibrium mixture under different conditions.

		Pressure in atmospheres			
		100	$\mathbf{2 0 0}$	$\mathbf{3 0 0}$	$\mathbf{4 0 0}$
Temperature in ${ }^{\circ} \mathbf{C}$	$\mathbf{3 0 0}$	35%	52%	65%	80%
	600	30%	46%	58%	74%
	900	23%	37%	47%	62%
	1200	14%	25%	36%	48%

Describe what happens to the percentage yield as the pressure and temperature change and explain the effect of increasing the pressure on the rate of reaction.
\qquad

2(a). The reversible reaction between carbon dioxide and hydrogen makes methane and water.

$$
\text { carbon dioxide }+ \text { hydrogen } \rightleftharpoons \text { methane }+ \text { water }
$$

In a sealed container this reversible reaction forms a dynamic equilibrium.

What is meant by the term dynamic equilibrium?

Refer to both concentration and rate of reaction in your answer.
\qquad
\qquad
\qquad

(b). * Kayvan investigates the effect of changing the pressure and changing the temperature on this reaction.

$$
\text { carbon dioxide }+ \text { hydrogen } \rightleftharpoons \text { methane }+ \text { water }
$$

$$
\mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

The table shows the percentage yield of methane in the equilibrium mixture under different conditions.

		Pressure in atmospheres			
		100	$\mathbf{2 0 0}$	$\mathbf{3 0 0}$	$\mathbf{4 0 0}$
Temperature in ${ }^{\circ} \mathbf{C}$	$\mathbf{3 0 0}$	35%	52%	65%	80%
	600	30%	46%	58%	74%
	900	23%	37%	47%	62%
	1200	14%	25%	36%	48%

Kayvan predicts that the reaction between carbon dioxide and hydrogen is endothermic and involves a reduction in the volume of gases.

Describe and explain whether Kayvan's predictions are supported by the reaction and results in the table.
\qquad

3(a). This question is about the Contact Process used for the manufacture of sulfuric acid.

Look at the flow chart for the process.

In the process, sulfur dioxide reacts with oxygen to make sulfur trioxide.

$$
2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}
$$

The forward reaction is exothermic.

Two of the conditions used are:

- a temperature of $450^{\circ} \mathrm{C}$
- a low pressure of 3 atmospheres.

Write down one other condition used in the process.
(b). Explain the choice of conditions used in the process.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
4. This question is about making ammonia by the Haber process.

Nitrogen and hydrogen react to make ammonia.

Look at the graph.

It shows the yield of ammonia under different conditions of temperature and pressure.

One cost of making ammonia is the energy needed.

Write about some of the other costs of making ammonia.

Use the graph to decide the conditions that give the highest yield of ammonia.

The quality of written communication will be assessed in your answer to this question.
5. Ethanol (alcohol) is made by reacting ethene with steam.
ethene + steam ? ethanol

Look at the flowchart.

Look at the table.

It gives some information about the percentage yield of ethanol at different temperatures and pressures.

Pressure in atmospheres	Percentage yield		
$\mathbf{2 0 0}{ }^{\circ} \mathbf{C}$	$300^{\circ} \mathbf{C}$	$\mathbf{4 0 0}{ }^{\circ} \mathbf{C}$	6
40	16	12	12
80	30	22	17
120	42	30	21
160	50	36	

(i) What conditions give the highest percentage yield?
pressure \qquad atmospheres temperature \qquad ${ }^{\circ} \mathrm{C}$
(ii) Suggest why a pressure of 70 atmospheres is used rather than the pressure you answered in part (i).

6(a). In a closed system a reversible reaction will form an equilibrium mixture.

Which of the following statements are true for a reversible reaction at equilibrium?

Tick $(\boldsymbol{\checkmark})$ the two correct answers.

The rate of the forward reaction is faster than the rate of the backward reaction.

The position of equilibrium will not change if more product is added.

The concentration of the reactants does not change.

The rate of the forward reaction is the same as the rate of the backward reaction.

The concentration of the reactants is the same as the concentration of the products.

The position of equilibrium moves to the left when product is removed from the equilibrium.
\square
(b). Methane is a fuel that can be made by the reaction between carbon dioxide and hydrogen.

$$
\mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Paul predicts that

- the reaction is exothermic
- there are more moles of gas on the right-hand side of the equation.

Look at the two graphs.

Do the graphs support Paul's predictions?

Explain your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
7. Ethanol (alcohol) is made by reacting ethene with steam.
ethene + steam ? ethanol

What is meant by the symbol ? in the equation?

8(a). Ethanol (alcohol) is made by reacting ethene with steam.

$$
\text { ethene }+ \text { steam } \rightleftharpoons \text { ethanol }
$$

Look at the flowchart.

Look at the table.

It gives some information about the percentage yield of ethanol at different temperatures and pressures.

Pressure in atmospheres	$\mathbf{3}\|c\|$		
	$\mathbf{2 0 0}{ }^{\circ} \mathbf{C}$	$\mathbf{3 0 0}{ }^{\circ} \mathbf{C}$	$\mathbf{4 0 0}{ }^{\circ} \mathbf{C}$
40	16	12	6
80	30	22	12
120	42	30	17
160	50	36	21

(i) What happens to the percentage yield as the pressure increases?
(ii) What happens to the percentage yield as the temperature increases?
(b). The highest percentage yield is achieved with a temperature of $200^{\circ} \mathrm{C}$ and 160 atmospheres.

The actual conditions used to make ethanol are:

- catalyst of phosphoric(V) acid
- a pressure of 70 atmospheres
- a temperature of $300^{\circ} \mathrm{C}$.

Use ideas about percentage yield and rate of reaction to suggest why each condition is used.
\qquad
\qquad
\qquad
\qquad
\qquad
(c). This process is automated.

Explain why automation is used.
\qquad
9. Ammonia is made from nitrogen and hydrogen in an equilibrium reaction.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

The forward reaction is exothermic.

Look at Table 1.

It shows the percentage of ammonia in the equilibrium mixture at $450^{\circ} \mathrm{C}$ and different pressures.

Pressure in atmospheres	Percentage (\%) of ammonia at $450{ }^{\circ} \mathbf{C}$
1	0.2
50	9.5
100	16.2
200	25.3

Table 1

Look at Table 2.

It shows the percentage of ammonia in the equilibrium mixture at 300 atmospheres and different temperatures.

Temperature in ${ }^{\circ} \mathbf{C}$	Percentage (\%) of ammonia at $\mathbf{3 0 0}$ atmospheres
400	50
450	35
500	25
550	17

Table 2

Describe and explain how changing the pressure and changing the temperature affect the position of equilibrium in the reaction between nitrogen and hydrogen.

The quality of written communication will be assessed in your answer to this question.
10. Carbon dioxide, CO_{2}, reacts with hydrogen, H_{2}, to make methanol, $\mathrm{CH}_{3} \mathrm{OH}$.

$$
\mathrm{CO}_{2}+3 \mathrm{H}_{2} ? \mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O}
$$

Phil investigates this reversible reaction.

He mixes carbon dioxide with hydrogen.

He lets this mixture reach equilibrium.

Phil measures the percentage yield of methanol in this equilibrium mixture.

He uses different temperatures and pressures.

Look at his results for different temperatures at a pressure of 100 atmospheres.

Temperature in ${ }^{\circ} \mathbf{C}$	Percentage yield (\%)
100	99
200	97
300	94
400	90

Look at his results for different pressures at a temperature of $400^{\circ} \mathrm{C}$.

Pressure in atmospheres	Percentage yield (\%)
20	38
40	58
60	73
80	83
100	90

How does the percentage yield change with temperature and with pressure?

Describe how the percentage yield is linked to the position of equilibrium.

The quality of written communication will be assessed in your answer to this question.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

11(a). Ethanol can be made from ethene and water.

The flowchart shows this process.

The symbol equation for the reaction is:

$$
\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}
$$

The percentage of ethanol changes as the temperature and pressure change.

Look at the table.

It shows the percentage of ethanol at different temperatures and pressures.

Pressure in atmospheres	Percentage of ethanol (\%)			
	At $\mathbf{1 0 0 ^ { \circ }} \mathbf{C}$	At $200^{\circ} \mathbf{C}$	At $\mathbf{3 0 0}{ }^{\circ} \mathbf{C}$	At $\mathbf{4 0 0}{ }^{\circ} \mathbf{C}$
20	15	10	5	2
40	20	15	10	5
60	40	30	20	10
80	60	50	40	20

Which of the following conditions gives the highest percentage of ethanol?

[^0]Choose from A, B, C or \mathbf{D}.
answer
(b). The conditions used for making ethanol are:

- $300^{\circ} \mathrm{C}$
- 60 atmospheres pressure.

Suggest why these conditions are used even though the percentage of ethanol is only 20%.
\qquad
\qquad

12(a). Ammonia is made from nitrogen and hydrogen in the Haber process.

Look at the equation for this reaction.

> nitrogen + hydrogen ? ammonia

What does the symbol ? mean?
(b). The percentage of ammonia changes as the temperature and pressure change.

Look at the graph.

Look at the graph for $350^{\circ} \mathrm{C}$.

What is the percentage of ammonia at 400 atmospheres?
\qquad
answer \%

END OF QUESTION PAPER

Question		Answer/ndicative content	Marks	Guidance	
1	a		Rate of forward reaction equals the rate of the backward reaction (1) Concentration of reactants and products do not change (1)	2	DO NOT ALLOW concentration of reactant and products are the same ALLOW concentration of reactants and products stay the same

Question		Answer/Indicative content	Marks	Guidance
	b	* Please refer to the marking instruction point 10 for guidance on how to mark this question. Level 3 (5-6 marks) Describes the effect of changing the temperature and pressure on the percentage yield from the table and includes clear explanations on the effect of increasing the pressure on the rate of reaction. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Describes the effect of changing the temperature and pressure on the percentage yield from the table and either describes the effect of increasing the pressure on the rate of reaction or explains the effect increasing the pressure on the rate of reaction. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Describes the effect of changing the temperature and pressure on the percentage yield from the table or describes the effect of increasing the pressure on the rate of reaction. The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit.	6	AO1.1: Knowledge of pressure on rate of reaction - Increasing the pressure increases the rate of reaction. - Increasing the pressure means particles are closer together. - Increasing the pressure means more crowded particles / more particles in the same space. - Increasing the pressure means more collisions between particles. - More collisions the quicker the reaction. - More collisions more percentage yield. A03.1a: Analyse information in the table to interpret percentage yield - As temperature increases the percentage yield decreases. - As pressure increases the percentage yield increases. - The highest yield is when the temperature is low and the pressure is high.
		Total	8	

Question		Answer/ndicative content	Marks	Guidance	
2	a		Rate of forward reaction equals the rate of the backward reaction (1) Concentration of reactants and products do not change (1)	2	ALLOW concentration of reactant and product do not change DO NOT ALLOW concentration of reactant and products are the same

Question		Answer/Indicative content	Marks	Guidance
	b	*Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Describes and explains the effect of changing the temperature and pressure on the position of equilibrium in both theoretical terms and from the table and explains that one prediction is supported and the other prediction is not There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Describes and explains the effect of changing the temperature and pressure on the position of equilibrium in both theoretical terms and from the table There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Describes the effect of changing the temperature and pressure on the position of equilibrium in theoretical terms or describes the effect of changing the temperature and pressure on the position of equilibrium from the table The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit.	6	A01.1: Knowledge of temperature and pressure on percentage yield - As temperature increases the position of equilibrium shifts to the left in an exothermic reaction. - As pressure increases the position of equilibrium shifts to the side with the least number of moles of gas. - Decreasing the temperature of a system in dynamic equilibrium favours the exothermic reaction. A03.1a: Analyse information in the table to interpret equilibrium position - As temperature increases the percentage yield decreases. - As temperature increases position of equilibrium moves to the left. - As the pressure increases the percentage yield increases. - As the pressure increases position of equilibrium moves to the right. AO3.2a: Analyse information in the table / equation to make judgements / predictions - The prediction is not supported since reaction must be exothermic rather than endothermic because position of equilibrium moves to the left as temperature increases. - The prediction is supported in terms of the moles of gas as pressure increases the position of equilibrium moves to the right. - The prediction is supported because as the pressure increases the percentage yield increases.
		Total	8	

Question		Answer/ndicative content	Marks	Guidance	
3	a			catalyst / vanadium(V) oxide $/ \mathrm{V}_{2} \mathrm{O}_{5}(1)$	1
allow vanadium pentoxide					
if a named catalyst is given it must be					
correct including oxidation number except					
allow vanadium oxide catalyst					
if formula and name given both must be					
correct					
Examiner's Comments					
This question was about the Contact					

The need for a catalyst was well known but

many candidates gave the name of the

wrong catalyst for example iron or nickel. A

small proportion of candidates referred to a

high concentration as a condition.\end{array}\right\}\)

Mark Scheme

Ques	Answer/Indicative content	Marks	Guidance
b	any three from: catalyst increases rate of reaction (1) catalyst does not change position of equilibrium (1) increasing temperature - increases rate of reaction / temperature used to have a high rate of reaction (1) but increasing temperature position of equilibrium to left / temperature used to not shift the equilibrium to the left (1) at low pressure position of equilibrium is already on right (1) so expensive high pressures are not needed / at low pressure rate is low so reaction is easier to control (1)	3	allow ora where appropriate allow catalyst does not change (percentage) yield allow increasing temperature decreases (percentage) yield / increasing temperature favours backward reaction (1) reference to it is a compromise temperature is not sufficient allow good product (percentage) yield at low pressure not use low pressure to shift equilibrium to the right Examiner's Comments This question was about the Contact Process. There were many different marking points that could be accessed by the candidates. In terms of temperature the idea that the reaction would be fast and was low enough to keep the equilibrium on the right was sufficient - many candidates only mentioned the reference to rate. In terms of the pressure many candidates thought that the low pressure was to force the position of equilibrium to the right. Only the best answers appreciated that even at low pressure the position of equilibrium was on the right. Many candidates appreciated that a higher pressure would be more expensive. Most candidates appreciated that the catalyst increases the rate of reaction but the candidates did not often mention that the position of equilibrium was unaffected.
	Total	4	

Question		Answer/Indicative content	Marks	Guidance	
					related to the energy e.g. maintaining the pressure or temperature, these answers were not given any credit.
5		i	160 atm and 200 oC (1)	Total	
		ii	any two from: idea that higher energy cost with higher pressure (1) idea that higher plant costs with higher pressures (1) idea that greater safety risks with higher pressure (1)	2	both required Examiner's Comments Most candidates could identify the conditions giving the highest yield. Only a minority could explain why these conditions were not used by reference to higher cost to generate high pressures or higher plant costs to withstand high pressures.
	if in doubt assume answer refers to 70atm allow it is cheaper (1) if no other marks awarded allow 70atm to avoid breaking the equipment (1) allow uses less energy (1)				

Question		Answer/Indicative content	Marks	Guidance
6	a	The rate of the forward reaction is faster than the rate of the backward reaction \square The position of equilibrium will not change if more product is added The concentration of the reactants does not change The rate of the forward reaction is the same as the rate of the backward reaction \square The concentration of the reactants is the same as the concentration of the products \square The position of equilibrium moves to the left when product is removed from the equilibrium \square one correct answer (1) but two correct answers (2)	2	?Examiner's Comments?? Most candidates did not choose both of the correct answers. The answers to the last two boxes were common errors.
	b	(yes) it is exothermic because the percentage yield goes down as temperature increases (1) (no) there are less moles on right hand side because the percentage yield goes up as pressure increases (1)	2	Answers must refer to yield, or amount of product reference to only position of equilibrium is not sufficient ignore references to bond making and bond breaking allow ora if specified Examiner's Comments This question that assessed evaluation skills was extremely demanding. Candidates had to apply their understanding of le Chatelier's principle to decide if the statements were supported. Many candidates were not able to relate the pattern shown by a graph to the correct statement and then decide if the pattern supported the statement.
		Total	4	

Question		Answer/Indicative content	Marks	Guidance	
7			$\begin{array}{l}\text { reversible reaction / reaction goes both } \\ \text { ways (1) }\end{array}$	1	allow forms an equilibrium (1)
Examiner's Comments					

understood by about three quarters of

candidates.\end{array}\right]\)

Mark Scheme

Question			Answer/Indicative content	Marks	Guidance
8	a	i	increases / gets bigger / AW (1)	1	Examiner's Comments This question was about the manufacture of ethanol by the hydration of ethene. Most candidates could interpret the data in the table.
		ii	decreases / gets less / AW (1)	1	Examiner's Comments Most candidates could interpret the data in the table.
	b		idea of catalyst used to speed up the reaction or increase the rate of reaction (1) 70 atm used as is cheaper to generate than higher pressures (1) $300^{\circ} \mathrm{C}$ is used to increase the rate of reaction but sacrifice percentage yield / it is a compromise or optimum temperature (1)	3	allow catalyst does not affect percentage yield (1) allow answer relating to the risks associated with high pressure (1) Examiner's Comments Was a challenging question and only a small proportion of candidates were able to explain why the temperature chosen was a compromise. Candidates were most likely to be awarded a mark for stating that the catalyst increased the rate of reaction or for the idea that a higher pressure will cost more money.
	c		idea of reduction of wage bill / idea of reduction of number of workers (1)	1	ignore rule out human error ignore to make the process work faster ignore references to safety ignore it is a continuous process not no labour costs Examiner's Comments Many candidates appreciated that fewer workers would be employed. However some stated that no workers would be needed, which was not allowed on the mark scheme.
			Total	6	

| Question | | Answer/Indicative content | Marks | Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | $\begin{array}{l}\text { did not specify the direction of the change. } \\ \text { Candidates were more likely to be able to } \\ \text { explain the effect of increasing temperature } \\ \text { on the position of equilibrium rather than } \\ \text { the effect of increasing the pressure. The } \\ \text { best answers for increasing temperature } \\ \text { referring to the reaction being exothermic } \\ \text { or the reverse reaction being endothermic. } \\ \text { The best answers for increasing pressure } \\ \text { referred to the reaction moving to the side } \\ \text { with the least number of moles. }\end{array}$ |
| A significant proportion of the candidates | | | | |
| answered a completely different question | | | | |
| to the one set, since they tried to explain | | | | |
| the conditions used in the reaction and | | | | |
| referred to optimum conditions and rate of | | | | |
| reaction. | | | | |$]$

Question		Answer/Indicative content	Marks	Guidance
10		[Level 3] Deduces how changing temperature and pressure affects the percentage yield AND explains the connection between percentage yield and position of equilibrium Quality of written communication does not impede communication of the science at this level (5-6 marks) [Level 2] Deduces how changing temperature and changing the pressure affects the percentage yield Quality of written communication partly impedes communication of the science at this level (3-4 marks) [Level 1] Deduces how changing temperature affects the percentage yield OR deduces how changing pressure affects the percentage yield Quality of written communication impedes communication of the science at this level (1-2 marks) [Level 0] Insufficient or irrelevant science. Answer not worthy of credit.	6	This question is targeted at grades up to C. Indicative scientific points at level 3 must include: - As percentage yield increases position of equilibrium shifts to the right / high percentage yield has position of equilibrium is on the right / ora Relevant points at all levels could include explanations - as temperature increases percentage yield decreases / ora - as pressure increases percentage yield increases / ora Use the L1, L2, L3 annotations in scoris. Do not use ticks. Examiner's Comments Most candidates could state the relationship between the temperature and the percentage yield and between pressure and percentage yield and gained level 2 (4 marks). If only one of these relationships was given then level 1 (1 or 2 marks) was achieved. Few candidates could describe how the percentage yield was linked to the position of equilibrium which was necessary to reach level 3 (5 or 6 marks)
		Total	6	

Question		Answer/Indicative content	Marks	Guidance
11	a	B (1)	1	allow correct answer ticked, circled or underlined in list if the answer line is blank Examiner's Comments Most candidates identified the conditions that give the highest percentage of ethanol.
	b	any two from: the temperature or pressure chosen is a compromise (1) the high temperature gives a high rate of reaction (1) high pressure increases the percentage yield of ethanol (1) at higher temperatures the percentage yield is lower (1) higher pressures are expensive to maintain or generate (1)	2	allow answer relating to the risks associated with high pressure (1) Examiner's Comments This was a challenging question and only a small proportion of candidates were able to suggest why these conditions are used, even though they do not give the highest percentage yield. Candidates were most likely to be awarded a mark for suggesting that the high temperature gives a high rate of reaction or that higher pressures are expensive to generate.
		Total	3	
12	a	reversible (1)	1	allow reaction goes both ways / goes backwards and forwards / reaction forms an equilibrium mixture Examiner's Comments This part was fairly well answered.
	b	50\% (1)	1	allow any value 50-51 Examiner's Comments This part was fairly well answered.
		Total	2	

[^0]: 1 high pressure with high temperature
 2 high pressure with low temperature
 3 low pressure with high temperature
 4 low pressure with low temperature

