Answer all the questions.

1. Urea is a fertiliser.

The formula for urea is

$\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$

A student makes 1 mole of urea from 2 moles of ammonia.

What is the mass of urea that the student makes?

A 43.0 g
B 44.0 g
C 58.0 g
D 60.0 g

Your answer \square

2(a). Sarah does three titrations with dilute hydrochloric acid and potassium hydroxide solution.

Look at the apparatus she uses.

burette
dilute hydrochloric acid
$25.0 \mathrm{~cm}^{3}$ of potassium hydroxide solution with three drops of litmus

Sarah uses a pipette to measure out the $25.0 \mathrm{~cm}^{3}$ of potassium hydroxide solution.

Describe and explain one safety precaution Sarah uses with the pipette.
\qquad
\qquad
(b). In her first titration Sarah measures the initial volume of hydrochloric acid in the burette.

She slowly adds the acid until the potassium hydroxide is just neutralised.

She then measures the volume of the hydrochloric acid again.

Describe how Sarah can tell when the potassium hydroxide solution is just neutralised.
\qquad
\qquad
\qquad
(c). Look at the diagrams. They show parts of the burette during the first titration.

first titration

Here is Sarah's results table.

Titration number	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
final reading in cm^{3}		37.5	32.1
initial reading in cm^{3}		20.4	15.0
titre (volume of acid added) in cm^{3}		17.1	17.1

(i) Complete the table by reading the burette readings from the diagrams.
(ii) Sarah thinks the mean titre is $17.1 \mathrm{~cm}^{3}$.

Is she correct?

Explain your answer.
\qquad
\qquad
\qquad
(d). Sarah does a titration to make a fertiliser called potassium nitrate, KNO_{3}.

Look at the equation for the reaction she uses.

$$
\mathrm{KOH}+\mathrm{HNO}_{3} \rightarrow \mathrm{KNO}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

The relative formula masses, M_{r}, of each compound are shown in the table.

compound	formula	relative formula mass
potassium hydroxide	KOH	56.1
nitric acid	HNO_{3}	63.0
potassium nitrate	KNO_{3}	101.1
water	$\mathrm{H}_{2} \mathrm{O}$	18.0

What is the atom economy for the reaction to make potassium nitrate?

Assume that water is a waste product.

Atom economy = \qquad \%
3. Which of the following procedures is the most suitable for preparing a $0.100 \mathrm{~mol} / \mathrm{dm}^{3}$ solution of sodium carbonate?

The relative formula mass, M_{r}, of sodium carbonate is 106 .

A Dissolving 10.6 g of sodium carbonate in water to make $1.0 \mathrm{dm}^{3}$ of solution.
B Dissolving 10.6 g of sodium carbonate in $0.10 \mathrm{dm}^{3}$ of water.
C Dissolving 10.6 g of sodium carbonate in $1.0 \mathrm{dm}^{3}$ of water.
D Dissolving 106 g of sodium carbonate in water to make $1.0 \mathrm{dm}^{3}$ of solution.

Your answer \square
4. Zinc nitrate thermally decomposes to give two gases.

$$
2 \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{ZnO}(\mathrm{~s})+4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

A student heats 1.89 g of zinc nitrate until there is no further reaction.

What is the total volume of gas, measured at room temperature and pressure, made in this reaction?

Assume that one mole of gas occupies a volume of $24 \mathrm{dm}^{3}$ at room temperature and pressure.

The molar mass of zinc nitrate is $189 \mathrm{~g} / \mathrm{mol}$.

A $0.12 \mathrm{dm}^{3}$
B $0.48 \mathrm{dm}^{3}$
C $0.60 \mathrm{dm}^{3}$
D $1.20 \mathrm{dm}^{3}$

Your answer \square
5. A student is making a fertiliser called potassium nitrate, KNO_{3}.

Look at the equation for the reaction she uses.

$$
\mathrm{KOH}+\mathrm{HNO}_{3} \rightarrow \mathrm{KNO}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

The relative formula masses, M_{r}, of each compound are shown in the table.

Compound	Formula	Relative formula mass
potassium hydroxide	KOH	56.1
nitric acid	HNO_{3}	63.0
potassium nitrate	KNO_{3}	101.1
water	$\mathrm{H}_{2} \mathrm{O}$	18.0

What is the atom economy for the reaction to make potassium nitrate?

Assume that water is a waste product.

A 15.1\%
B 47.1\%
C 52.9\%
D 84.9\%

Your answer \square
6. Ammonium sulfate is a salt.

It is manufactured using the reaction between the alkali ammonia and sulfuric acid.

$$
2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}
$$

A sample containing 17.0 g of ammonia completely reacts with sulfuric acid.

A mass of 66.0 g of ammonium sulfate is made.

Show that the maximum mass of ammonium sulfate that can be made from 51.0 g of ammonia is 198.0 g .
7. Urea is a fertiliser.

The formula for urea is:

$\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$

A student makes 1 mole of urea from 2 moles of ammonia.

What is the mass of urea that the student makes?

A 43.0 g
B 44.0 g
C 58.0 g
D 60.0 g

Your answer \square

8(a). Sarah does three titrations with dilute hydrochloric acid and potassium hydroxide solution.

Hydrochloric acid neutralises the alkali potassium hydroxide.

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{KCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Look at the apparatus she uses.

burette
$0.100 \mathrm{~mol} / \mathrm{dm}^{3}$ dilute hydrochloric acid
$25.0 \mathrm{~cm}^{3}$ of potassium hydroxide solution with three drops of litmus

Look at the diagrams. They show parts of the burette during the first titration.

First titration

Here is Sarah's results table:

Titration number	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
final reading $\left(\mathrm{cm}^{3}\right)$		37.5	32.1
initial reading $\left(\mathrm{cm}^{3}\right)$		20.4	15.0
titre (volume of acid added) $\left(\mathrm{cm}_{3}\right)$		17.1	17.1

Use the diagrams and table to help you calculate the mean titre.

Explain your answer.
\qquad
\qquad

Mean titre = \qquad cm^{3}
(b). Sarah uses $25.0 \mathrm{~cm}^{3}$ of potassium hydroxide solution, KOH .

She also uses hydrochloric acid with a concentration of $0.100 \mathrm{~mol} / \mathrm{dm}^{3}$.

Calculate the concentration, in $\mathrm{mol} / \mathrm{dm}^{3}$, of the $\mathrm{KOH}(\mathrm{aq})$.

Concentration of $\mathrm{KOH}(\mathrm{aq})=$ \qquad $\mathrm{mol} / \mathrm{dm}^{3}$
(c). Use your answer to (b) to calculate the concentration of the $\mathrm{KOH}(\mathrm{aq})$ in $\mathrm{g} / \mathrm{dm}^{3}$.

$$
\text { Concentration of } \mathrm{KOH}(\mathrm{aq})=
$$

9. The reversible reaction between carbon dioxide and hydrogen makes methane and water.

$$
\text { carbon dioxide }+ \text { hydrogen } \rightleftharpoons \text { methane }+ \text { water }
$$

Kayvan investigates this reaction.

He predicts that 11.0 g of carbon dioxide should make 4.0 g of methane.

In an experiment, he finds that 11.0 g of carbon dioxide makes 2.2 g of methane.

Calculate the percentage yield of methane.
10. Stewart and Claire want to do a titration.

Look at the diagrams. They show some of the apparatus they use.

burette

pipette

flask

pipette filler

They want to titrate dilute hydrochloric acid with dilute sodium hydroxide solution.

Describe, in detail, how they do the titration. Include any safety precautions they should take.

You may wish to draw a labelled diagram to help your answer.

The quality of written communication will be assessed in your answer to this question.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

11(a). Stowmarket Synthetics manufacture ethanoic acid, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$, by two different processes.

Process 1
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+\mathrm{O}_{2}$? $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$
Process 2
$\mathrm{CH}_{4} \mathrm{O}+\mathrm{CO}$? $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$

Look at the table of relative formula masses.

Compound	Formula	Relative formula mass, $\boldsymbol{M}_{\mathbf{r}}$
ethanol	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	46
oxygen	O_{2}	32
ethanoic acid	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	60
water	$\mathrm{H}_{2} \mathrm{O}$	18
methanol	$\mathrm{CH}_{4} \mathrm{O}$	32
carbon monoxide	CO	28

The relative atomic mass of $\mathrm{H}=1$, of $\mathrm{C}=12$, and of $\mathrm{O}=16$.

In process 2, Stowmarket Synthetics use 320 g of methanol.

Calculate the maximum mass of ethanoic acid that can be made.
\qquad
\qquad
\qquad
\square
(b). Stowmarket Synthetics know that the atom economy of a process is important.

Water is a waste product in process 1 .

Show that the atom economy for making ethanoic acid by process $\mathbf{1}$ is 77%.
\qquad
\qquad
\qquad
(c). Stowmarket Synthetics also know that the percentage yield of a process is important.

The factory uses 5.2 tonnes of methanol in process 2.

A scientist predicts they should make 9.8 tonnes of ethanoic acid.

They actually make 9.5 tonnes of ethanoic acid.

Show that the percentage yield of ethanoic acid is 97%.
\qquad
\qquad
\qquad

12(a). Stowmarket Synthetics manufacture ethanoic acid, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$, by two different processes.

Process 1
Process 2

$$
\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+\mathrm{O}_{2} ? \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

$$
\mathrm{CH}_{4} \mathrm{O}+? \mathrm{CO} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}
$$

Look at the table of relative formula masses.

Compound	Formula	Relative formula mass, Mr
ethanol	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	
oxygen	O_{2}	32
ethanoic acid	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	60
water	$\mathrm{H}_{2} \mathrm{O}$	18
methanol	$\mathrm{CH}_{4} \mathrm{O}$	32
carbon monoxide	CO	28

The relative atomic mass of $\mathrm{H}=1$, of $\mathrm{C}=12$, and of $\mathrm{O}=16$.

Calculate the relative formula mass of ethanol, $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$.
\qquad
\qquad
\qquad
relative formula mass = \qquad
(b). In process 2 Stowmarket Synthetics use 320 g of methanol.

They make 600 g of ethanoic acid.

What mass of carbon monoxide do they need?
\qquad
\qquad
mass of carbon monoxide $=$ g
(c). Stowmarket Synthetics know that the atom economy of a process is important.

Water is a waste product in process 1.

Show that the atom economy for making ethanoic acid by process 1 is 77%.
\qquad
\qquad
(d). Stowmarket Synthetics also know that the percentage yield of a process is important.

The factory uses 5.2 tonnes of methanol in process 2.

A scientist predicts they should make 9.8 tonnes of ethanoic acid.

They actually make 9.5 tonnes of ethanoic acid.

Show that the percentage yield of ethanoic acid is 97%.
\qquad
\qquad
\qquad

13. Look at the table.

It gives information about the atom economy and percentage yield for making ethanoic acid.

Process	Atom economy (\%)	Percentage yield (\%)
1	77	85
2	100	97

Process 2 has a higher atom economy and a higher percentage yield.
(i) Explain one advantage, other than cost, of a very high atom economy.
\qquad

(ii) Explain one advantage, other than cost, of a very high percentage yield.
\qquad
14. It is necessary to dilute a concentrated solution in medicines and in some food preparation.

Write about one example of the need for dilution in medicine and one example in food preparation.

In each example explain why it is important to dilute the solution.
\qquad
\qquad
\qquad

15(a). Sam does some titrations.

She uses sodium hydroxide solution and dilute nitric acid.

Look at the apparatus she uses.

Sam adds five drops of litmus indicator to the conical flask.

She records the burette reading at the start and slowly adds the acid to the flask.

She records the burette reading at the end-point of the titration.

Describe the colour change of the litmus at the end-point of the titration.
\qquad
\qquad
(b). Sam does three titrations.

Look at a page from her exercise book. It shows her results.
second titration
fürst reading 5.2 second burette reading
$24.1 \mathrm{~cm}^{3}$
füst burette reading 24.2 second reading $43.1 \mathrm{~cm}^{3}$
(i) Present Sam's results in a table.

Include in the table the titres (the volume of acid added).
(ii) Which titrations should Sam use to work out the average (mean) titre?

What is the average (mean) titre for these titrations?

Give your answer to one decimal place.
\qquad
\qquad
\qquad
Average (mean) titre = \qquad cm^{3}

16(a). This question is about acids.

Nitric acid, HNO_{3}, is a strong acid and propanoic acid, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$, is a weak acid.

David investigates the reaction of both of these acids with calcium carbonate.

David does two experiments

- the first with nitric acid
- the second with propanoic acid.

Each time he puts $50 \mathrm{~cm}^{3}$ of $2.0 \mathrm{~mol} / \mathrm{dm}^{3}$ acid into a conical flask.

He then adds the same mass of calcium carbonate to each acid.

David measures the total volume of carbon dioxide made every 10 seconds.

Draw a labelled diagram of the apparatus David can use in these experiments.
(b). Look at the balanced symbol equation for the reaction of calcium carbonate with nitric acid.

$$
\mathrm{CaCO}_{3}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

(i) David's experiment with nitric acid makes $60 \mathrm{~cm}^{3}$ of carbon dioxide at room temperature and pressure.

How many moles of carbon dioxide are made at the end of the reaction?

One mole of carbon dioxide has a volume of $24000 \mathrm{~cm}^{3}$ at room temperature and pressure.
moles of carbon dioxide $=$ \qquad
(ii) Calculate the mass of calcium carbonate needed to make this amount of carbon dioxide.

The relative formula mass, M_{r}, of calcium carbonate, CaCO_{3}, is 100 .
mass of calcium carbonate $=$ \qquad

17(a). Look at the equation for the reaction.

$$
\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

The mean volume of sodium hydroxide solution used is $25.0 \mathrm{~cm}^{3}$.

Brian uses $20.0 \mathrm{~cm}^{3}$ of hydrochloric acid.

The concentration of the hydrochloric acid is $0.100 \mathrm{~mol} / \mathrm{dm}^{3}$.
Calculate the concentration of the sodium hydroxide in $\mathrm{mol} / \mathrm{dm}^{3}$.
answer \qquad $\mathrm{mol} / \mathrm{dm}^{3}$
(b). Brian adds sodium hydroxide solution slowly until the phenolphthalein changes colour.

Phenolphthalein is a single indicator.

Universal indicator is a mixed indicator.

Explain why Brian used phenolphthalein rather than universal indicator.
18. Hydrocarbons are oxidised to make ethanoic acid.

Mike predicts that 5.2 tonnes of ethanoic acid should be made.

The factory actually makes 2.4 tonnes of ethanoic acid.
(i) Calculate the percentage yield of ethanoic acid.

Write your answer to two significant figures.
\qquad
\qquad
\qquad
percentage yield $=$ \%
(ii) Describe one disadvantage of having a percentage yield of this value.
19. Magnesium sulfate and magnesium nitrate are both used as fertilisers.

Magnesium nitrate is made by a neutralisation reaction.

Look at the equation for the reaction.

$$
2 \mathrm{HNO}_{3}+\mathrm{MgO} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Water is a waste product.

Show that the atom economy for the reaction is 89% and explain why it is important that the atom economy for a reaction is as high as possible.

The relative atomic masses $\left(A_{r}\right)$ for $H=1, N=14, O=16$ and $M g=24$.

The quality of written communication will be assessed in your answer to this question.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

20 (a). In process \mathbf{S}, sodium ethanoate, $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, reacts with sulfuric acid.

$$
2 \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}
$$

Look at the table of relative formula masses, M_{r}.

Substance	Relative formula masses, $\boldsymbol{M}_{\mathbf{r}}$
$\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	82
$\mathrm{H}_{2} \mathrm{SO}_{4}$	98
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	142
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	60

(i) A mass of 8.2 g of sodium ethanoate reacts with excess sulfuric acid.

What mass of ethanoic acid, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$, can be made?
\qquad
\qquad
\qquad
\qquad
\qquad
mass of ethanoic acid $=$ g
(ii) Calculate the atom economy for process \mathbf{S}.

Sodium sulfate, $\mathrm{Na}_{2} \mathrm{SO}_{4}$, is a waste product.
\qquad
\qquad
\qquad
atom economy $=$ \%
(b). Ethanoic acid, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$, can be made by several different processes.

Three of these are process \mathbf{R}, process \mathbf{S} and process \mathbf{T}.

In process R, methanol reacts with carbon monoxide.

$$
\mathrm{CH}_{4} \mathrm{O}+\mathrm{CO} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}
$$

This Process R has 100% atom economy.

Explain how you can tell this from the symbol equation.
\qquad

21(a). Cristina does a titration.

She uses dilute nitric acid and an alkali called sodium hydroxide solution.

Look at the apparatus she uses.

(i) What is the name of apparatus \mathbf{X} ?
(ii) Cristina uses a pipette to measure the $10.0 \mathrm{~cm}^{3}$ of sodium hydroxide solution.

Describe one safety precaution that Cristina takes when using the pipette.

Explain why this safety precaution is needed.
(iii) Cristina slowly adds dilute nitric acid to the flask.

She keeps adding the acid until all the sodium hydroxide is neutralised.

Write about how Cristina can tell when the sodium hydroxide has been neutralised.
\qquad
\qquad

(b). This question is about acids and alkalis.

Indicators change colour in acids and alkalis.

Look at the table about some indicators.

Indicator	Colour in		
	Acid	Neutral	Alkali
litmus	red	purple	blue
phenolphthalein	colourless	colourless	
universal indicator	red, orange or yellow	$\ldots-\ldots-\ldots-\ldots$	blue or purple

Complete the table.
22. Hydrogen peroxide can also be made from barium peroxide.

$$
\begin{aligned}
& \text { barium peroxide }+ \text { sulfuric acid } \rightarrow \text { hydrogen peroxide }+ \text { barium sulfate } \\
& \mathrm{BaO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \quad \mathrm{H}_{2} \mathrm{O}_{2}+\quad \mathrm{BaSO}_{4}
\end{aligned}
$$

The table shows the relative formula masses, M_{r}, of the substances in the symbol equation.

Substance	Relative formula mass, $\boldsymbol{M}_{\mathbf{r}}$
BaO_{2}	169
$\mathrm{H}_{2} \mathrm{SO}_{4}$	
$\mathrm{H}_{2} \mathrm{O}_{2}$	34
BaSO_{4}	233

(i) Calculate the relative formula mass, M_{r}, of sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Put your answer in the table.

The relative atomic mass, A_{r}, of $\mathrm{H}=1, \mathrm{O}=16$ and $\mathrm{S}=32$.
(ii) Barium sulfate is a waste product in this reaction.

Calculate the atom economy for this reaction.
atom economy = \qquad \%
23. Jim makes some magnesium sulfate.

This is the method he uses.

| Step 1 | lim adds magnesium carbonate to dilute
 sulfuric acid. He stops adding magnesium
 carbonate when the mixture stops |
| :--- | :--- | :--- |
| bubbling. | |

Step 5	
Step 6 filter paper crystals	Jim dries the crystals of magnesium sulfate.

Jim predicts he should make $\mathbf{4 g}$ of magnesium sulfate.

He actually makes $\mathbf{3} \mathbf{g}$.

Calculate the percentage yield for this reaction and suggest reasons why the yield is less than 100%.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
24. This question is about acid-base titrations.

Complete the table to show the colours of acid-base indicators.

	Colour in	
Indicator	Acid	Alkali
litmus	red	blue
phenolphthalein	colourless	

25. Hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, is used in some spacecraft to provide oxygen.

Hydrogen peroxide can be made from hydrogen and oxygen.

$$
\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}
$$

(i) This reaction has a 100% atom economy.

Explain how you can tell from the equation.
\qquad
(ii) Industrial chemical processes should have as high an atom economy as possible.

Explain two reasons why.
\qquad
\qquad
\qquad
26. Trevor and Julie investigate the reaction between magnesium and hydrochloric acid at $20^{\circ} \mathrm{C}$.
magnesium + hydrochloric acid ? magnesium chloride + hydrogen

Hydrogen gas is given off in the reaction.

Look at the diagram. It shows part of the apparatus they use.

Complete the diagram to show how Trevor and Julie can collect and measure the volume of hydrogen made.

27(a). Nick reacts magnesium with oxygen.

He heats the magnesium in a crucible.

The magnesium reacts with oxygen in the air.

Magnesium oxide is made.

$$
\text { magnesium + oxygen } \rightarrow \text { magnesium oxide }
$$

Nick does the experiment four times with different masses of magnesium.

Look at the table of his results.

Mass of magnesium in \mathbf{g}	Mass of oxygen used in \mathbf{g}	Mass of magnesium oxide made in \mathbf{g}
0.10	0.07	0.17
0.20	0.14	0.34
0.30	0.21	
0.40		0.68

Complete the table.
(b). How much magnesium would Nick need to make 1.7 g of magnesium oxide?

Explain how you worked out your answer.
\qquad
\qquad

He does four titrations.

Look at his results.

Titration number	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Volume of sodium hydroxide added in $\mathbf{c m}^{3}$	22.9	22.1	22.3	22.2

(i) Calculate the mean (average) volume of sodium hydroxide solution added for titrations 2, 3 and 4.
mean volume of sodium hydroxide solution added $=$ \qquad cm^{3}
(ii) Titration 1 was not included in the calculation of the mean volume of sodium hydroxide added. Suggest why.

$$
\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}
$$

Oskar uses 100 g of hydrogen.
(i) Show that the predicted yield of hydrogen peroxide is 1700 g .

$$
\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}
$$

The relative formula mass, M_{r}, of $\mathrm{H}_{2}=2$, of $\mathrm{O}_{2}=32$ and of $\mathrm{H}_{2} \mathrm{O}_{2}=34$.
\qquad
\qquad
\qquad
\qquad
(ii) Oskar's actual yield of hydrogen peroxide is 1530 g .

He predicts he should make 1700 g of hydrogen peroxide.

Calculate Oskar's percentage yield of hydrogen peroxide.
percentage yield $=$ \qquad \%
(b). Hydrogen peroxide can also be made from barium peroxide.

barium peroxide	+ sulfuric acid	\rightarrow	hydrogen peroxide	+ barium sulfate	
BaO_{2}	$+\mathrm{H}_{2} \mathrm{SO}_{4}$	\rightarrow	$\mathrm{H}_{2} \mathrm{O}_{2}$	+	BaSO_{4}

The table shows the relative formula masses, M_{r}, of the substances in the symbol equation.

Substance	Relative formula mass, $\boldsymbol{M}_{\mathbf{r}}$
BaO_{2}	169
$\mathrm{H}_{2} \mathrm{SO}_{4}$	98
$\mathrm{H}_{2} \mathrm{O}_{2}$	34
BaSO_{4}	233

Barium sulfate is a waste product in this reaction.

Calculate the atom economy for this reaction.

30(a). Ethanoic acid, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$, can be made by several different processes.

Three of these are process \mathbf{R}, process \mathbf{S} and process \mathbf{T}.

In process R, methanol reacts with carbon monoxide.

$$
\mathrm{CH}_{4} \mathrm{O}+\mathrm{CO} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}
$$

(i) Process \mathbf{R} has 100% atom economy.

What does 100% atom economy mean?
\qquad
\qquad
(ii) A factory uses 16 tonnes of methanol to make 30 tonnes of ethanoic acid.

What mass of carbon monoxide is needed?
\qquad
mass of carbon monoxide $=$
tonnes
(b). In process T, hydrocarbons can be are oxidised to make ethanoic acid.

Mike predicts that 5.2 tonnes of ethanoic acid should be made.

The factory actually makes 2.4 tonnes of ethanoic acid.

Calculate the percentage yield of ethanoic acid.

Write your answer to two significant figures.
\qquad
\qquad
\qquad
percentage yield $=$ \%

END OF QUESTION PAPER

Mark Scheme

Question		Answer/Indicative content	Marks	Guidance
				Very few candidates attained the higher levels on this question. Examiners saw many answers which made no reference to the use of an indicator or a pH meter to detect the endpoint; this restricted marks to Level 1.
		Total	6	
11	a	$32(\mathrm{~g})$ of methanol makes $60(\mathrm{~g})$ of ethanoic acid / 10 moles of methanol is used $/ 32 \times 10=$ 320 (1) So $320(\mathrm{~g})$ makes $600(\mathrm{~g})$ of ethanoic acid (1)	2	allow two marks for the correct answer of 600 g even if no working out Examiner's Comments This question assessed various quantitative aspects of the specification. Both calculations differentiated well, with only the better candidates able to successfully attempt the question.
	b	$\begin{aligned} & \text { atom economy }=\frac{60}{60+18} / \frac{60}{46+32} / \frac{60}{78}(1) \\ & \text { but } \\ & \text { atom economy }=\frac{60}{60+18} \times 100 / \frac{60}{46+32} \times 100 / \\ & \frac{60}{78} \times 100(2) \end{aligned}$	2	allow atom economy formula in words for one mark i.e. $\text { atom economy }=\frac{\text { total } M r \text { of desired products }}{\text { total Mr of all products }} \times 100 \text { (1) }$ Examiner's Comments Both calculations differentiated well, with only the better candidates able to successfully attempt the question.
	C	$\begin{aligned} & \text { percentage yield }=\frac{9.5}{9.8}(1) \\ & \text { but } \\ & \text { percentage yield }=\frac{9.5}{9.8} \times 100(2) \end{aligned}$	2	allow percentage yield formula in words for one mark e.g. percentage yield $=$ actual yield $\times 100$ predicted yield or $\text { percentage yield }=\frac{\mathrm{am}}{\mathrm{pm}} \times 100$ Examiner's Comments More candidates were able to calculate the percentage yield than mass of product made or atom economy in (a) and (b). Many candidates did not understand the importance of either a high percentage yield or a high atom economy.
		Total	6	

Question		Answer/Indicative content	Marks	Guidance
12	a	46 (1)	1	ignore units Examiner's Comments Most candidates could correctly calculate the relative formula mass of ethanol.
	b	280 (g) (1)	1	unit not needed ignore incorrect units Examiner's Comments Just over half of all candidates could correctly work out the mass of carbon monoxide needed for the reaction.
	c	$\begin{aligned} & \text { atom economy }=\frac{60}{60+18} / \frac{60}{46+32} / \frac{60}{78}(1) \\ & \text { but } \\ & \text { atom economy }=\frac{60}{60+18} \times 100 / \frac{60}{46+32} \times 100 / \\ & \frac{60}{78} \times 100(2) \end{aligned}$	2	allow atom economy formula in words for one mark i.e. atom economy $=\frac{\text { total } \mathrm{Mr} \text { of desired products }}{\text { total } \mathrm{Mr} \text { of all products }} \times 100$ (1) or $\text { atom economy }=\frac{\text { total } \mathrm{Mr} \text { of desired products }}{\text { total } \mathrm{Mr} \text { of all reactants }} 100 \text { (1) }$ Examiner's Comments Just over half of all candidates could correctly work out the mass of carbon monoxide needed for the reaction.
	d	$\begin{aligned} & \text { percentage yield }=\frac{9.5}{9.8}(1) \\ & \text { but } \\ & \text { percentage yield }=\frac{9.5}{9.8} \times 100(2) \end{aligned}$	2	allow percentage yield formula in words for one mark e.g. percentage yield $=\underset{\text { predicted yield }}{\text { actual yield }} \times 100$ or $\text { percentage yield }=\frac{\mathrm{am}}{\mathrm{pm}} \times 100$ Examiner's Comments Although better answered than part (d), a significant number of candidates omitted the question. Better candidates showed a good understanding of the ideas involved, scoring both marks.

Question		Answer/Indicative content	Marks	Guidance	
13			T Total	more sustainable / makes less or no waste products (1)	1

| Question | | Answer/Indicative content | Marks | Guidance |
| :--- | :--- | :--- | :--- | :---: | :--- |
| 14 | | $\begin{array}{l}\text { any two from: } \\ \text { must dilute baby milk because harmful if } \\ \text { too concentrated (1) } \\ \text { dilute medicines to avoid giving overdoses } \\ \text { or avoid harm (1) }\end{array}$ | 2 | $\begin{array}{l}\text { ignore can have too many chemicals or } \\ \text { preservatives }\end{array}$ |
| dilute concentrated fruit squashes to make | | | | |
| sure the taste is not too strong (1) | | | | |\(\left.\left.\quad \begin{array}{l}allow idea that doses are weaker or could

be harmful if left undiluted (1)

ignore progressively dilute heroin to wean

addicts off the drug

allow if not are highly acidic (1)

Examiner's Comments\end{array}\right\} $$
\begin{array}{l}\text { Better candidates usually scored both } \\
\text { marks. The idea that medicines needed to } \\
\text { be diluted to avoid overdose was a } \\
\text { common answer gaining 1 mark. } \\
\text { Understanding that foods such as cordials } \\
\text { need to be diluted to avoid too strong a } \\
\text { taste was less well understood. }\end{array}
$$\right]\)

Question			Answer/Indicative content	Marks	Guidance
15	a		(litmus changes) from blue or purple (1) to red (1)	2	allow one mark if the colours are reversed allow pink for red (1) allow changes from blue to green to red (1) allow sudden change of colour of litmus for one mark if no other mark awarded Examiner's Comments Few candidates correctly stated that the colour change was from blue to red. ' Colourless' and 'orange' featured quite prominently. Pink was an acceptable alternative to red.
	b	i	suitable table for all three titrations but no units or titres or numbers (1) BUT table for all three titrations including data, units and titres (2)	2	
					allow volume of acid instead of titre allow first instead or reading 1 instead of starting allow second or reading 2 instead of final allow the final and starting rows to be reversed. allow similar table with the rows and columns reversed Examiner's Comments just over half of all candidates scored 1 mark for constructing a table which included all three titrations but without units, titres or numbers. Very few candidates scored both marks.

Question	Answer/Indicative content	Marks	Guidance
ii	use titrations 2 and $\mathbf{3}$ / use the last two titrations (1) $\text { titre = } 18.9 \text { (1) }$	2	allow do not use the rough value (1) allow ecf from wrong titres in (i) or from wrong choice of titrations but answer must be to one decimal place e.g if all three readings used then 19.3 (1) and e.g. if rough and 1 taken or rough and 2 taken then 19.5 (1) Examiner's Comments was poorly answered. Only the best candidates selected titrations 2 and 3 . 'All three' was a common incorrect response, although error carried forward was employed in that case for the second mark. Many candidates calculated the mean using burette readings rather than the titre.
	Total	6	

Mark Scheme

Question		Answer/ndicative content	Marks	any two from: correct piece of apparatus to collect and measure gas e.g. (gas) syringe, upturned measuring cylinder with water or upturned burette with water (1)	a

Question		Answer/Indicative content	Marks	Guidance	
					Mass $=0.25(\mathrm{~g}) / 2.5 \times 10^{? 1}(1)$

Mark Scheme

Question			Answer/Indicative content	Marks	Guidance
	b		single indicator or phenolphthalein only gives a single colour change / gives a sudden colour change (1) mixed indicator or universal indicator can give several colour changes / mixed indicator gives a gradual colour change (1)	2	The first mark awarded must refer to a colour change ?allow phenolphthalein only has two colours / is either pink or colourless / phenolphthalein changes colour at the endpoint ignore clear allow universal indicator shows many colours / universal indicator changes colour all the time Examiner's Comments Although candidates often appreciated that there was a sudden colour change with phenolphthalein and a gradual colour change with universal indicator, many did not include the word colour in their answer.
			Total	5	
18		'	$46 \%(2)$ but 46.2 / 46.15 / 46.154 (1)	2	answer must have two sig figs for two marks allow one mark for $\frac{2.4}{5.2} \times 100$ Examiner's Comments Most candidates correctly calculated the percentage yield, but many did not give their answer to two significant figures and therefore scored only 1 mark.
		ii	waste a lot of starting material / wastes reactants (1)	1	ignore waste products ignore just 'a lot of waste' ignore wastes lots of resources Examiner's Comments Good responses appreciated that a low percentage yield wastes reactants. Most answers were expressed in terms of a large amount of waste products.
			Total	3	

Question		Answer/Indicative content	Marks	Guidance	
					possible, although marks scored in this way were again rarer. As in the other 6 mark questions on the paper, candidates had to address all aspects of the question to gain credit at level 3 (5-6 marks). Many candidates did not explain why an industrial process needs to have as high an atom economy as possible so did not gain credit beyond Level 2.
				6	

Mark Scheme

Question			Answer/Indicative content	Marks	Guidance
20	a	i	idea that 164 g of sodium ethanoate makes 120 g of ethanoic acid / idea that 82 g of sodium ethanoate makes 60 g of ethanoic acid (1) but mass is 6 (2)	2	units not needed Examiner's Comments Candidates who understood the idea of reacting masses were able to correctly calculate the mass of ethanoic acid as 6 g . Some candidates tried to calculate a percentage yield or atom economy. Few candidates scored 1 mark for correct working out.
		ii	$\left\|\begin{array}{l} \frac{(2 \times 60)}{(2 \times 60)+142} \times 100 \text { or } \frac{120}{262} \times 100 \text { or } \\ \frac{(2 \times 60)}{(2 \times 82)+98} \times 100 \text { or } \frac{120}{164+98} \times 100 \text { (1) } \end{array}\right\|$ but 45.8\% (2)	2	allow full marks for correct answer despite working out allow 46\% (2) Examiner's Comments Candidates found the atom economy calculation challenging.
	b		no undesired products made / no waste products made / all the atoms that react end up in the product / only one product made (1)	1	not the same number of atoms on each side of the equation Examiner's Comments Good responses appreciated that the process has 100% atom economy because there are no waste products. Candidates who failed to gain credit gave answers in terms of conservation of mass.
			Total	5	

Question			Answer/Indicative content	Marks	Guidance
21	a	i	burette (1)	1	Examiner's Comments Less than half of candidates could identify a burette in part (i). Common incorrect answers included 'measuring cylinders', ' pipettes', 'test tube' and 'measuring tube'.
		ii	pipette filler (1) because the liquid is corrosive or harmful or an irritant (1) or (safety) goggles (1) because the liquid is corrosive or harmful or an irritant (1)	2	allow avoids getting liquid in mouth (1) ignore idea that protects eyes from chemicals allow wear gloves (1) because the liquid is corrosive or harmful or an irritant (1) allow protective clothing (1) because the liquid is corrosive or harmful or an irritant (1) Examiner's Comments The most common safety precautions were to use goggles, gloves or protective clothing. Few candidates mentioned the use of a pipette filler. The idea that these precautions are necessary as the liquids used are corrosive, harmful or irritants was not well understood.
		iii	idea of a colour change (1) but idea of a sudden colour change (2) or starts blue (1) then it changes to purple or red (1)	2	Examiner's Comments Most candidates mentioned a colour change and scored 1 mark. Fewer stated the sudden nature of the colour change or gave the correct colours for before and after neutralisation for the second mark.

Mark Scheme

Question			Answer/Indicative content				Marks	Guidance
	b		Indicator	Colour in			2	allow purple / lilac / red (1) Examiner's Comments Just under half of candidates could recall one of the colours correctly and a further quarter correctly identified both. 'Green' was the most common correct answer.
				Acid	Neutral	Alkali		
			litmus	red	purple	blue		
			phenolphtha lein	colourless	colourless	pink		
			universal indicator	red, orange or yellow	green	blue or purple		
			phenolphthalein row correct (1) universal indicator row correct (1)					
			Total				7	
22		i	98 (1)				1	Examiner's Comments Some candidates missed out the question but others were able to calculate the relative formula mass as 98 . Most candidates could not calculate the atom economy as 12.7%.
		ii	LOOK FOR ANSWER FIRST OF ALL IF atom economy =12.7(34) OR 13 AWARD 2 MARKS$\left\lvert\, \begin{aligned} & \frac{34}{169+98} \times 100 \text { or } \frac{34}{267} \times 100 \text { or } \frac{34}{34+233} \times 100 \text { (1) } \\ & 12.7(1) \end{aligned}\right.$				2	allow $\underset{\text { sum of desired product } M_{r} \text { of all products }}{ } \times 100(1)$ Examiner's Comments A significant proportion of candidates left this question blank.
			Total				3	

| Question | | Answer/Indicative content | Marks | Guidance |
| :--- | :--- | :--- | :--- | :---: | :--- |$|$| 25 | |
| :--- | :--- |

| Question | | Answer/Indicative content | Marks | Guidance | |
| :--- | :--- | :--- | :--- | :---: | :--- | :--- | :--- |
| 26 | | | $\begin{array}{l}\text { suitable method of collecting gas - } \\ \text { graduated gas syringe, measuring cylinder, } \\ \text { burette (2) }\end{array}$ | 2 | $\begin{array}{l}\text { allow one mark for collection using } \\ \text { apparatus that was not graduated but the } \\ \text { method must work } \\ \text { Examiner's Comments } \\ \text { Many poorly drawn diagrams suggesting }\end{array}$ |
| that rulers were not used. Many candidates | | | | | |
| were not familiar with collecting gas over | | | | | |
| water or in a gas syringe. | | | | | |$]$

Question		Answer/Indicative content	Marks	Guidance
28	i	$\begin{equation*} \frac{22.1+22.3+22.2}{3} \tag{1} \end{equation*}$ or 22.2 (1)	1	Examiner's Comments The average titre was calculated correctly by most candidates. A few incorrectly included 22.9 in the calculation.
	ii	titration 1 is not consistent / only consistently close readings should be included / all the other volumes are close to one another / all the other volumes are within $0.2 \mathrm{~cm}^{3}$ (1)	1	allow titration 1 is a rough titration / titration 1 is inaccurate / it is a practice titration allow titration 1 is an outlier or anomaly allow it is a very different from the other values e.g. it is (at least) $0.5 \mathrm{~cm}^{3}$ different ignore it does not follow the pattern Examiner's Comments Candidates were able to explain why the titration figure 22.9 was ignored in calculating the average.
		Total	2	

Question			Answer/Indicative content	Marks	Guidance
29	a	i	idea that 2 g of H_{2} makes 34 g of $\mathrm{H}_{2} \mathrm{O}_{2}$ (1) idea that 100 g of H_{2} is $50 \times 2 \mathrm{~g}$ so mass of $\mathrm{H}_{2} \mathrm{O}_{2}$ is 34×50 (1)	2	$\begin{align*} & \text { allow } \frac{34}{2} \times 100(2) \\ & \text { eg } \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2} \tag{1}\\ & 2 \times 50=100 \\ & \text { allow } 32 \times 50=1700 \\ & \text { and } 100 \mathrm{~g} \mathrm{H}_{2}+1600 \mathrm{~g} \mathrm{O}_{2}=1700 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{2}(1) \end{align*}$ but $100 \mathrm{~g}+1600 \mathrm{~g}=1700 \mathrm{~g}$ scores 0 if no evidence of other relevant calculation Examiner's Comments Candidates who understood the idea of reacting masses were able to correctly show that the predicted yield of hydrogen peroxide is 1700 g .
		ii	LOOK FOR ANSWER FIRST OF ALL IF percentage yield = 90 AWARD 2 MARKS $\begin{align*} & \frac{1530}{1700} \times 100(1) \tag{1}\\ & 90(1) \end{align*}$	2	allow $\frac{\text { actual }}{\text { predicted }} \times 100 \text { or } \frac{a m}{p m} \times 100$ Examiner's Comments Most candidates correctly calculated the percentage yield as 90%.
	b		LOOK FOR ANSWER FIRST OF ALL IF atom economy =12.7(34) OR 13 AWARD 2 MARKS $\begin{aligned} & \frac{34}{169+98} \times 100 \text { or } \frac{34}{267} \times 100 \text { or } \frac{34}{34+233} \times 100 \text { (1) } \\ & 12.7 \text { (1) } \end{aligned}$	2	allow M_{t} of desired product $\times 100$ (1) sum of M_{r} of all products Examiner's Comments Responses to this atom economy calculation were better than the similar calculation on the 2014 paper. Incorrect responses usually resulted from 34 divided by 233 (ie the mass of the waste product only) or 34 divided by 534 (ie the mass of the reactants and the products). Incorrect rounding of 12.7%, to give an answer of 12%, was penalised.
			Total	6	

Mark Scheme

Question		Answer/Indicative content	Marks	Guidance	
30	a			no undesired products made / all the atoms that react end up in the product / only one product made (1)	1

