1. Urea is a fertiliser.

The formula for urea is

$(NH_2)_2CO$

A student makes 1 mole of urea from 2 moles of ammonia.

What is the mass of urea that the student makes?

A 43.0 g

B 44.0 g

C 58.0 g

D 60.0 g

Your answer

2(a). Sarah does three titrations with dilute hydrochloric acid and potassium hydroxide solution.

Look at the apparatus she uses.

Sarah uses a pipette to measure out the 25.0 cm³ of potassium hydroxide solution.

Describe and explain one safety precaution Sarah uses with the pipette.

[2]

(b). In her first titration Sarah measures the initial volume of hydrochloric acid in the burette.

She slowly adds the acid until the potassium hydroxide is just neutralised.

She then measures the volume of the hydrochloric acid again.

Describe how Sarah can tell when the potassium hydroxide solution is just neutralised.

	[2]
	<u>L_1</u>
Lock at the discussion. They show ments of the hypertext during the first tituation	

(c). Look at the diagrams. They show parts of the burette during the first titration.

first titration

Here is Sarah's results table.

Titration number	1	2	3
final reading in cm ³		37.5	32.1
initial reading in cm ³		20.4	15.0
titre (volume of acid added) in cm ³		17.1	17.1

- (i) **Complete** the table by reading the burette readings from the diagrams.
- (ii) Sarah thinks the mean titre is 17.1 cm³.

Is she correct?

Explain your answer.

______[1]

(d). Sarah does a titration to make a fertiliser called potassium nitrate, KNO₃.

Look at the equation for the reaction she uses.

$KOH + HNO_3 \rightarrow KNO_3 + H_2O$

The relative formula masses, M_r , of each compound are shown in the table.

compound	formula	relative formula mass
potassium hydroxide	кон	56.1
nitric acid	HNO ₃	63.0
potassium nitrate	KNO ₃	101.1
water	H ₂ O	18.0

What is the atom economy for the reaction to make potassium nitrate?

Assume that water is a waste product.

Atom economy = _____ %

3. Which of the following procedures is the most suitable for preparing a 0.100 mol/dm³ solution of sodium carbonate?

The relative formula mass, M_r , of sodium carbonate is 106.

- A Dissolving 10.6 g of sodium carbonate in water to make 1.0 dm³ of solution.
- B Dissolving 10.6 g of sodium carbonate in 0.10 dm³ of water.
- C Dissolving 10.6 g of sodium carbonate in 1.0 dm³ of water.
- D Dissolving 106 g of sodium carbonate in water to make 1.0 dm³ of solution.

Your answer

$$2Zn(NO_3)_2(s) \rightarrow 2ZnO(s) + 4NO_2(g) + O_2(g)$$

A student heats 1.89 g of zinc nitrate until there is no further reaction.

What is the total volume of gas, measured at room temperature and pressure, made in this reaction?

Assume that one mole of gas occupies a volume of 24 dm³ at room temperature and pressure.

The molar mass of zinc nitrate is 189 g/mol.

A 0.12 dm^3 B 0.48 dm^3 C 0.60 dm^3 D 1.20 dm^3

Your answer

5. A student is making a fertiliser called potassium nitrate, KNO₃.

Look at the equation for the reaction she uses.

$$KOH + HNO_3 \rightarrow KNO_3 + H_2O$$

The relative formula masses, $M_{\rm r}$, of each compound are shown in the table.

Compound	Formula	Relative formula mass
potassium hydroxide	КОН	56.1
nitric acid	HNO ₃	63.0
potassium nitrate	KNO ₃	101.1
water	H ₂ O	18.0

What is the atom economy for the reaction to make potassium nitrate?

Assume that water is a waste product.

A 15.1%

B 47.1%

C 52.9%

D 84.9%

Your answer

[1]

6. Ammonium sulfate is a salt.

It is manufactured using the reaction between the alkali ammonia and sulfuric acid.

$$2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4$$

A sample containing 17.0 g of ammonia completely reacts with sulfuric acid.

A mass of 66.0 g of ammonium sulfate is made.

Show that the maximum mass of ammonium sulfate that can be made from 51.0 g of ammonia is 198.0 g.

7. Urea is a fertiliser.

The formula for urea is:

(NH₂)₂CO

A student makes 1 mole of urea from 2 moles of ammonia.

What is the mass of urea that the student makes?

А	43.0 g	
В	44.0 g	
С	58.0 g	
D	60.0 g	
Yoı	ur answer	

[1]

8(a). Sarah does three titrations with dilute hydrochloric acid and potassium hydroxide solution.

Hydrochloric acid neutralises the alkali potassium hydroxide.

 $HCl(aq) + KOH(aq) \rightarrow KCl(aq) + H_2O(I)$

Look at the apparatus she uses.

Look at the diagrams. They show parts of the burette during the first titration.

First titration

Here is Sarah's results table:

Titration number	1	2	3
final reading (cm ³)		37.5	32.1
initial reading (cm ³)		20.4	15.0
titre (volume of acid added) (cm ₃)		17.1	17.1

Use the diagrams and table to help you calculate the mean titre.

Explain your answer.

Mean titre = _____ cm³

© OCR 2018. You may photocopy this page.

(b). Sarah uses 25.0 cm³ of potassium hydroxide solution, KOH.

She also uses hydrochloric acid with a concentration of 0.100 mol/dm³.

Calculate the concentration, in mol/dm³, of the KOH(aq).

Concentration of KOH(aq) =	mol/dm ³	[2]
----------------------------	---------------------	-----

(c). Use your answer to (b) to calculate the concentration of the KOH(aq) in g/dm³.

Concentration of KOH(aq) = $_{g/dm^3}$ [2]

9. The reversible reaction between carbon dioxide and hydrogen makes methane and water.

carbon dioxide + hydrogen	water	
---------------------------	-------	--

Kayvan investigates this reaction.

He predicts that 11.0 g of carbon dioxide should make 4.0 g of methane.

In an experiment, he finds that 11.0 g of carbon dioxide makes 2.2 g of methane.

Calculate the percentage yield of methane.

Percentage yield =		%
--------------------	--	---

Look at the diagrams. They show some of the apparatus they use.

They want to titrate dilute hydrochloric acid with dilute sodium hydroxide solution.

Describe, in detail, how they do the titration. Include any safety precautions they should take.

You may wish to draw a labelled diagram to help your answer.

The quality of written communication will be assessed in your answer to this question.

	[0]
 	 [6]

11(a). Stowmarket Synthetics manufacture ethanoic acid, C₂H₄O₂, by two different processes.

Process 1	$C_2H_6O + O_2 ? C_2H_4O_2 + H_2O$
Process 2	$CH_4O + CO ? C_2H_4O_2$

Look at the table of relative formula masses.

Compound	Formula	Relative formula mass, <i>M</i> _r
ethanol	C ₂ H ₆ O	46
oxygen	O ₂	32
ethanoic acid	C ₂ H ₄ O ₂	60
water	H ₂ O	18
methanol	CH₄O	32
carbon monoxide	со	28

The relative atomic mass of H = 1, of C = 12, and of O = 16.

In process 2, Stowmarket Synthetics use 320 g of methanol.

Calculate the maximum mass of ethanoic acid that can be made.

[2]

(b). Stowmarket Synthetics know that the **atom economy** of a process is important.

Water is a waste product in process 1.

Show that the atom economy for making ethanoic acid by process 1 is 77%.

(c). Stowmarket Synthetics also know that the percentage yield of a process is important.

The factory uses 5.2 tonnes of methanol in process 2.

A scientist predicts they should make 9.8 tonnes of ethanoic acid.

They actually make 9.5 tonnes of ethanoic acid.

Show that the percentage yield of ethanoic acid is 97%.

______[2]

12(a). Stowmarket Synthetics manufacture ethanoic acid, $C_2H_4O_2$, by two different processes.

Process 1	$C_2H_6O + O_2 ? C_2H_4O_2 + H_2O$
Process 2	$CH_4O + ? CO C_2H_4O_2$

Look at the table of relative formula masses.

Compound	Formula	Relative formula mass, <i>M</i> r
ethanol	C ₂ H ₆ O	
oxygen	O ₂	32
ethanoic acid	C ₂ H ₄ O ₂	60
water	H ₂ O	18
methanol	CH ₄ O	32
carbon monoxide	CO	28

The relative atomic mass of H = 1, of C = 12, and of O = 16.

Calculate the relative formula mass of ethanol, C_2H_6O .

relative formula mass =	

(b). In process **2** Stowmarket Synthetics use 320 g of methanol.

They make 600 g of ethanoic acid.

What mass of carbon monoxide do they need?

mass of carbon monoxide = _____ g

[1]

(c). Stowmarket Synthetics know that the **atom economy** of a process is important.

Water is a waste product in process 1.

Show that the atom economy for making ethanoic acid by process **1** is 77%.

[2]

(d). Stowmarket Synthetics also know that the **percentage yield** of a process is important.

The factory uses 5.2 tonnes of methanol in process 2.

A scientist predicts they should make 9.8 tonnes of ethanoic acid.

They actually make 9.5 tonnes of ethanoic acid.

Show that the percentage yield of ethanoic acid is 97%.

13. Look at the table.

It gives information about the atom economy and percentage yield for making ethanoic acid.

Process	Atom economy (%)	Percentage yield (%)
1	77	85
2	100	97

Process 2 has a higher atom economy and a higher percentage yield.

(i) Explain one advantage, other than cost, of a very high atom economy.

 [1]

(ii) Explain one advantage, other than cost, of a very high percentage yield.

 [1]

14. It is necessary to dilute a concentrated solution in medicines and in some food preparation.

Write about **one** example of the need for dilution in medicine and **one** example in food preparation.

In each example explain why it is important to dilute the solution.

 [2]

She uses sodium hydroxide solution and dilute nitric acid.

Look at the apparatus she uses.

Sam adds five drops of litmus indicator to the conical flask.

She records the burette reading at the start and slowly adds the acid to the flask.

She records the burette reading at the end-point of the titration.

Describe the colour change of the litmus at the end-point of the titration.

[2]

(b). Sam does three titrations.

Look at a page from her exercise book. It shows her results.

second	rough
titration	titration
fírst readíng 5.2 second burette readíng 24.1 cm ³	burette reading goes from 0.0 to 20.1 cm ³
thírd títratíon	
fírst burette readíng 24.2 second readíng 43.1 cm³	

(i) Present Sam's results in a table.

Include in the table the titres (the volume of acid added).

(ii) Which titrations should Sam use to work out the average (mean) titre?

What is the average (mean) titre for these titrations?

Give your answer to one decimal place.

Average (mean) titre = _____ cm³ [2]

16(a). This question is about acids.

Nitric acid, HNO_3 , is a strong acid and propanoic acid, C_2H_5COOH , is a weak acid.

David investigates the reaction of both of these acids with calcium carbonate.

David does two experiments

- the first with nitric acid
- the second with propanoic acid.

Each time he puts 50 cm³ of 2.0 mol/dm³ acid into a conical flask.

He then adds the same mass of calcium carbonate to each acid.

David measures the total volume of carbon dioxide made every 10 seconds.

Draw a labelled diagram of the apparatus David can use in these experiments.

(b). Look at the balanced symbol equation for the reaction of calcium carbonate with nitric acid.

 $CaCO_3 + 2HNO_3 \rightarrow Ca(NO_3)_2 + CO_2 + H_2O$

(i) David's experiment with nitric acid makes 60 cm³ of carbon dioxide at room temperature and pressure.

How many moles of carbon dioxide are made at the end of the reaction?

One mole of carbon dioxide has a volume of 24 000 cm³ at room temperature and pressure.

moles of carbon dioxide = _____

(ii) Calculate the mass of calcium carbonate needed to make this amount of carbon dioxide.

The relative formula mass, M_r , of calcium carbonate, CaCO₃, is 100.

mass of calcium carbonate = _____ g

[1]

17(a). Look at the equation for the reaction.

 $NaOH + HC/ \rightarrow NaC/ + H_2O$

The mean volume of sodium hydroxide solution used is 25.0 cm³.

Brian uses 20.0 cm³ of hydrochloric acid.

The concentration of the hydrochloric acid is 0.100 mol / dm³.

Calculate the concentration of the sodium hydroxide in mol / dm³.

answer _____ mol / dm³

(b). Brian adds sodium hydroxide solution slowly until the phenolphthalein changes colour.

Phenolphthalein is a single indicator.

Universal indicator is a mixed indicator.

Explain why Brian used phenolphthalein rather than universal indicator.

[2]

[3]

18. Hydrocarbons are oxidised to make ethanoic acid.

Mike predicts that 5.2 tonnes of ethanoic acid should be made.

The factory actually makes 2.4 tonnes of ethanoic acid.

(i) Calculate the percentage yield of ethanoic acid.

Write your answer to **two** significant figures.

percentage yield =	%

[2]

(ii) Describe one disadvantage of having a percentage yield of this value.

[1]

19. Magnesium sulfate and magnesium nitrate are both used as fertilisers.

Magnesium nitrate is made by a neutralisation reaction.

Look at the equation for the reaction.

$$2HNO_3 + MgO \rightarrow Mg(NO_3)_2 + H_2O$$

Water is a waste product.

Show that the atom economy for the reaction is 89% and explain why it is important that the atom economy for a reaction is as high as possible.

The relative atomic masses (A_r) for H = 1, N = 14, O = 16 and Mg = 24.

The quality of written communication will be assessed in your answer to this question.

20(a). In process **S**, sodium ethanoate, $NaC_2H_3O_2$, reacts with sulfuric acid.

 $2NaC_2H_3O_2 + H_2SO_4 \rightarrow Na_2SO_4 + 2C_2H_4O_2$

Look at the table of relative formula masses, $M_{\rm r}$.

Substance	Relative formula masses, <i>M</i> _r
NaC ₂ H ₃ O ₂	82
H ₂ SO ₄	98
Na ₂ SO ₄	142
$C_2H_4O_2$	60

(i) A mass of 8.2 g of sodium ethanoate reacts with excess sulfuric acid.

What mass of ethanoic acid, $C_2H_4O_2$, can be made?

mass of ethanoic acid = _____ g

(ii) Calculate the atom economy for process S.

Sodium sulfate, Na₂SO₄, is a waste product.

atom economy = ______ %

[2]

(b). Ethanoic acid, $C_2H_4O_2$, can be made by several different processes.

Three of these are process **R**, process **S** and process **T**.

In process **R**, methanol reacts with carbon monoxide.

$$CH_4O + CO \rightarrow C_2H_4O_2$$

This Process ${\bf R}$ has 100% atom economy.

Explain how you can tell this from the symbol equation.

[1]	
[1]	

She uses dilute nitric acid and an alkali called sodium hydroxide solution.

Look at the apparatus she uses.

(i) What is the name of apparatus X?

[1]

(ii) Cristina uses a pipette to measure the 10.0 cm³ of sodium hydroxide solution.

Describe **one** safety precaution that Cristina takes when using the pipette.

Explain why this safety precaution is needed.

[2]

(iii) Cristina slowly adds dilute nitric acid to the flask.

She keeps adding the acid until all the sodium hydroxide is neutralised.

Write about how Cristina can tell when the sodium hydroxide has been neutralised.

[2]

(b). This question is about acids and alkalis.

Indicators change colour in acids and alkalis.

Look at the table about some indicators.

Indicator	Colour in		
	Acid	Neutral	Alkali
litmus	red	purple	blue
phenolphthalein	colourless	colourless	
universal indicator	red, orange or yellow		blue or purple

Complete the table.

barium peroxide + sulfuric acid \rightarrow hydrogen peroxide + barium sulfate BaO₂ + H₂SO₄ \rightarrow H₂O₂ + BaSO₄

The table shows the relative formula masses, M_r , of the substances in the symbol equation.

Substance	Relative formula mass, <i>M</i> r
BaO ₂	169
H ₂ SO ₄	
H ₂ O ₂	34
BaSO ₄	233

(i) Calculate the relative formula mass, M_r , of sulfuric acid, H₂SO₄.

Put your answer in the table.

The relative atomic mass, A_r , of H = 1, O = 16 and S = 32.

(ii) Barium sulfate is a waste product in this reaction.

Calculate the atom economy for this reaction.

atom economy = _____ %

© OCR 2018. You may photocopy this page.

[1]

This is the method he uses.

Jim predicts he should make ${\bf 4}~{\bf g}$ of magnesium sulfate.

He actually makes 3 g.

Calculate the percentage yield for this reaction and suggest reasons why the yield is less than 100%.

The quality of written communication will be assessed in your answer to this question.	
	[6]
 	.71

24. This question is about acid-base titrations.

Complete the table to show the colours of acid-base indicators.

	Colour in	
Indicator	Acid	Alkali
litmus	red	blue
phenolphthalein	colourless	

25. Hydrogen peroxide, H_2O_2 , is used in some spacecraft to provide oxygen.

Hydrogen peroxide can be made from hydrogen and oxygen.

$$H_2 + O_2 \rightarrow H_2O_2$$

(i) This reaction has a 100% atom economy.

Explain how you can tell from the equation.

	[1]
 	<u>L'1</u>

(ii) Industrial chemical processes should have as high an atom economy as possible.

Explain **two** reasons why.

magnesium + hydrochloric acid ? magnesium chloride + hydrogen

Hydrogen gas is given off in the reaction.

Look at the diagram. It shows **part** of the apparatus they use.

Complete the diagram to show how Trevor and Julie can **collect** and **measure** the volume of hydrogen made.

He heats the magnesium in a crucible.

The magnesium reacts with oxygen in the air.

Magnesium oxide is made.

magnesium + oxygen \rightarrow magnesium oxide

Nick does the experiment four times with different masses of magnesium.

Look at the table of his results.

Mass of magnesium in g	Mass of oxygen used in g	Mass of magnesium oxide made in g
0.10	0.07	0.17
0.20	0.14	0.34
0.30	0.21	
0.40		0.68

Complete the table.

(b). How much magnesium would Nick need to make 1.7 g of magnesium oxide?

Explain how you worked out your answer.

 [2]

Brian neutralises dilute hydrochloric acid with sodium hydroxide solution.
 He does four titrations.

Look at his results.

Titration number	1	2	3	4
Volume of sodium hydroxide added in cm ³	22.9	22.1	22.3	22.2

(i) Calculate the mean (average) volume of sodium hydroxide solution added for titrations 2, 3 and 4.

mean volume of sodium hydroxide solution added = $_____ cm^3$

(ii) Titration **1** was not included in the calculation of the mean volume of sodium hydroxide added.

Suggest why.

[1]

[1]

Oskar uses 100 g of hydrogen.

(i) Show that the predicted yield of hydrogen peroxide is 1700 g.

$$H_2 + O_2 \rightarrow H_2O_2$$

The relative formula mass, M_r , of H₂ = 2, of O₂ = 32 and of H₂O₂ = 34.

[2]

(ii) Oskar's actual yield of hydrogen peroxide is 1530 g.

He predicts he should make 1700 g of hydrogen peroxide.

Calculate Oskar's percentage yield of hydrogen peroxide.

percentage yield = _____ %

(b). Hydrogen peroxide can also be made from barium peroxide.

barium peroxide + sulfuric acid \rightarrow hydrogen peroxide + barium sulfate BaO₂ + H₂SO₄ \rightarrow H₂O₂ + BaSO₄

The table shows the relative formula masses, M_r , of the substances in the symbol equation.

Substance	Relative formula mass, <i>M</i> r
BaO ₂	169
H ₂ SO ₄	98
H ₂ O ₂	34
BaSO₄	233

Barium sulfate is a waste product in this reaction.

Calculate the atom economy for this reaction.

atom economy = _____%

[2]

30(a). Ethanoic acid, $C_2H_4O_2$, can be made by several different processes.

Three of these are process **R**, process **S** and process **T**.

In process **R**, methanol reacts with carbon monoxide.

```
CH_4O + CO \rightarrow C_2H_4O_2
```

(i) Process **R** has 100% atom economy.

What does 100% atom economy mean?

______[1]

(ii) A factory uses 16 tonnes of methanol to make 30 tonnes of ethanoic acid.

What mass of carbon monoxide is needed?

mass of carbon monoxide =	tonnes

[1]

(b). In process **T**, hydrocarbons can be are oxidised to make ethanoic acid.

Mike predicts that 5.2 tonnes of ethanoic acid should be made.

The factory actually makes 2.4 tonnes of ethanoic acid.

Calculate the percentage yield of ethanoic acid.

Write your answer to two significant figures.

percentage yield = _____ %

END OF QUESTION PAPER

[2]

Q	uestio	n	Ans	swer/Indic	ative cont	tent		Marks	Guidance
1			D					1	
			Total				1		
2	а		Use a pipe	tte filler (1)			2	
			Potassium hydroxide			/ potassiun	n		
	b		When one colour (1)	drop make	es the litmu	ıs change		2	ALLOW use a pH probe = 1 mark
			Correct co	lour chang	e blue to re	ed (1)			ALLOW gives a pH value of 7 when neutral = 1 mark
	с	i	Titration number	1	2	3		2	Correct burette readings = 1 mark
			final	17.8	37.5	32.1			Correct titre = 1 mark
			reading in cm ³						DO NOT ALLOW 0
			initial reading in cm ³	0.0	20.4	15.0			
			titre (volume of acid added) in cm ³	17.8	17.1	17.1			
		ii	Yes					1	
			Titration 1 is a rough estimate / titration 1 is an outlier / titrations 2 and 3 are identical (1)			s			
	d		Atom econ sum of <i>M</i> r					2	
			= (101 ÷ 1	19) × 100 ((1)				
			= 84.9 (%)	(1)					
			Total					9	
3			А					1	
			Total				1		
4			С					1	
	Total					1			

Qı	Question		Answer/Indicative content	Marks	Guidance
5			D	1	
			Total	1	
6			17 (g) of ammonia makes 66 (g) of ammonium sulfate So 51 g makes 198 g of ammonium sulfate (1)	1	
			Total	1	
7			D	1	
			Total	1	
8	а		Mean titre = 17.1 (1) Because titration 1 is a rough estimate / titration 1 is an outlier / titrations 2 and 3 are identical (1)	2	IGNORE anything in the titration table
	b		Moles of acid = 0.00171 (1) Concentration of KOH = 0.0684 (1)	2	ALLOW ECF from incorrect titre / 0.100 × titre × 10 ⁻³ ALLOW ECF from incorrect moles providing answer is to 3 sig figs / moles÷volume
	с		M_r of KOH = 56.1 (1) Concentration of KOH = 3.84 (1)	2	ALLOW correct answer without working ALLOW 3.837 ALLOW ECF from incorrect <i>M</i> _r and / or incorrect concentration from (b) / <i>M</i> _r × conc
			Total	6	
9			Percentage yield = (actual yield ÷ predicted yield) × 100 / (2.2 ÷ 4.0) × 100 (1) 55 (1)	2	ALLOW full marks for answer with no working out
			Total	2	

Question	Answer/Indicative content	Marks	Guidance		
	[Level 3] Complete description of a titration to include detection of endpoint and safety precautions Quality of written communication does not impede communication of the science at this level. (5 – 6 marks) [Level 2] Description of a titration to include detection of endpoint Quality of written communication partly impedes communication of the science at this level. (3 – 4 marks) [Level 1] Rudimentary description of a titration Quality of written communication impedes communication of the science at this level. (1 – 2 marks) Level 0 Insufficient or irrelevant science. Answer not worthy of credit. (0 marks)	6	 This question is targeted at grades up to E Indicative scientific points at level 3 may include: many of the points at levels 1 and 2 and in addition idea of repeating to obtain concordant results use pipette filler to avoid sucking alkali or acid into mouth safety goggles as liquids are corrosive fill burette above eye level Indicative scientific points at level 2 may include: acid in burette, alkali in flask (or vice versa) use pipette to accurately measure alkali (or acid) add acid to alkali (or vice versa) use of an indicator named indicator such as methyl orange, litmus or phenolphthalein colour changes at end point or when solution is neutral use of pH meter idea of measuring titre Indicative scientific points at level 1 may include: acid in burette, alkali in flask (or vice versa) use of pH meter idea of measuring titre Indicative scientific points at level 1 may include: acid in burette, alkali in flask (or vice versa) use of pH meter idea of measuring titre Indicative scientific points at level 1 may include: acid in burette, alkali in flask (or vice versa) use of pipette filler Use the L1, L2, L3 annotations in RM Assessor; do not use ticks. Examiner's Comments To gain credit at level 3 (5 – 6 marks) candidates needed to give a complete description of a titration including detectior of the endpoint and safety precautions. 		

Q	uestio	Answer/Indicative content	Marks	Guidance
				Very few candidates attained the higher levels on this question. Examiners saw many answers which made no reference to the use of an indicator or a pH meter to detect the endpoint; this restricted marks to Level 1.
		Total	6	
11	a	32 (g) of methanol makes 60 (g) of ethanoic acid / 10 moles of methanol is used / 32 x 10 = 320 (1)	2	allow two marks for the correct answer of 600g even if no working out Examiner's Comments
		So 320 (g) makes 600 (g) of ethanoic acid (1)		This question assessed various quantitative aspects of the specification.
				Both calculations differentiated well, with only the better candidates able to successfully attempt the question.
	b	atom economy = $\frac{60}{60 + 18}$ / $\frac{60}{46 + 32}$ / $\frac{60}{78}$ (1) but atom economy = $\frac{60}{60 + 18}$ × 100 / $\frac{60}{46 + 32}$ × 100 /	2	allow atom economy formula in words for one mark i.e. atom economy = <u>total Mr of desired products</u> x 100 (1) total Mr of all products
		$\frac{60}{78} \times 100$ (2)		Examiner's Comments
		/8		Both calculations differentiated well, with only the better candidates able to successfully attempt the question.
	с	percentage yield = $\frac{9.5}{9.8}$ (1) but percentage yield = $\frac{9.5}{9.8}$ × 100 (2)	2	allow percentage yield formula in words for one mark e.g. percentage yield = <u>actual yield</u> x 100 predicted yield or percentage yield = <u>am</u> x 100 pm
				Examiner's Comments
				More candidates were able to calculate the percentage yield than mass of product made or atom economy in (a) and (b).
				Many candidates did not understand the importance of either a high percentage yield or a high atom economy.
		Total	6	

Q	Question		Answer/Indicative content	Marks	Guidance
12	a		46 (1)	1	ignore units Examiner's Comments Most candidates could correctly calculate the relative formula mass of ethanol.
	b		280 (g) (1)	1	unit not needed ignore incorrect units Examiner's Comments Just over half of all candidates could correctly work out the mass of carbon monoxide needed for the reaction.
	C		atom economy = $\frac{60}{60 + 18}$ / $\frac{60}{46 + 32}$ / $\frac{60}{78}$ (1) but atom economy = $\frac{60}{60 + 18} \times 100$ / $\frac{60}{46 + 32} \times 100$ / $\frac{60}{78} \times 100$ (2)	2	allow atom economy formula in words for one mark i.e. atom economy = total Mr of desired products x 100 (1) total Mr of all products Or atom economy = total Mr of desired products x 100 (1) total Mr of all reactants Examiner's Comments Just over half of all candidates could correctly work out the mass of carbon monoxide needed for the reaction.
	d		percentage yield = $\frac{9.5}{9.8}$ (1) but percentage yield = $\frac{9.5}{9.8} \times 100$ (2)	2	allow percentage yield formula in words for one mark e.g. percentage yield = actual yield x 100 predicted yield or percentage yield = am x 100 pm Examiner's Comments Although better answered than part (d), a significant number of candidates omitted the question. Better candidates showed a good understanding of the ideas involved, scoring both marks.

Qı	uestio	n	Answer/Indicative content	Marks	Guidance
			Total	6	
13		i	more sustainable / makes less or no waste products (1)	1	makes less waste is not sufficient ignore makes less products ignore it wastes less resources Examiner's Comments Many candidates did not understand the importance of either a high percentage yield or a high atom economy. It was not sufficient to just state 'so there is no waste'; the candidates had to refer to either the less waste products or less waste reactants.
		ii	less waste of reactants (1)	1	 allow no need to recycle unreacted reactants ignore less waste / waste products ignore able to make more / more products made Examiner's Comments Many candidates did not understand the importance of either a high percentage yield or a high atom economy. It was not sufficient to just state 'so there is no waste'; the candidates had to refer to either the less waste products or less waste reactants.
			Total	2	

Qı	Question		Answer/Indicative content	Marks	Guidance
14			any two from: must dilute baby milk because harmful if too concentrated (1) dilute medicines to avoid giving overdoses or avoid harm (1) dilute concentrated fruit squashes to make sure the taste is not too strong (1)	2	 ignore can have too many chemicals or preservatives allow idea that doses are weaker or could be harmful if left undiluted (1) ignore progressively dilute heroin to wean addicts off the drug allow if not are highly acidic (1) Examiner's Comments Better candidates usually scored both marks. The idea that medicines needed to be diluted to avoid overdose was a common answer gaining 1 mark. Understanding that foods such as cordials need to be diluted to avoid too strong a taste was less well understood.
			Total	2	

Qu	uestio	n	Answer/Indicative content	Marks	Guidance
15	a		(litmus changes) from blue or purple (1) to red (1)	2	 allow one mark if the colours are reversed allow pink for red (1) allow changes from blue to green to red (1) allow sudden change of colour of litmus for one mark if no other mark awarded Examiner's Comments Few candidates correctly stated that the colour change was from blue to red. ' Colourless' and 'orange' featured quite prominently. Pink was an acceptable alternative to red.
	b	i	suitable table for all three titrations but no units or titres or numbers (1) BUT table for all three titrations including data, units and titres (2)	2	(Titration number) Rough / 1 2 3 final reading 20.1 24.1 43.1 / cm³ 0.0 5.2 24.2 reading / cm³ 20.1 18.9 18.9 allow volume of acid instead of titre allow first instead or reading 1 instead of starting 10.0 5.2 allow second or reading 2 instead of final allow the final and starting rows to be reversed. allow similar table with the rows and columns reversed Examiner's Comments just over half of all candidates scored 1 mark for constructing a table which included all three titrations but without units, titres or numbers. Very few candidates scored both marks.

Question	Answer/Indicative content	Marks	Guidance
	use titrations 2 and 3 / use the last two titrations (1) titre = 18.9 (1)	2	 allow do not use the rough value (1) allow ecf from wrong titres in (i) or from wrong choice of titrations but answer must be to one decimal place e.g if all three readings used then 19.3 (1) and e.g. if rough and 1 taken or rough and 2 taken then 19.5 (1) Examiner's Comments was poorly answered. Only the best candidates selected titrations 2 and 3. 'All three' was a common incorrect response, although error carried forward was employed in that case for the second mark. Many candidates calculated the mean using burette readings rather than the titre.
	Total	6	

Q	uestio	n	Answer/Indicative content	Marks	Guidance
16	a		any two from: correct piece of apparatus to collect and measure gas e.g. (gas) syringe, upturned measuring cylinder with water or upturned burette with water (1)	2	gas syringe flask The measuring apparatus must be graduated and does not need to be assembled. The apparatus does not need to be named if there is no ambiguity from the diagram
			workable and gas tight (1)		 allow even if the syringe / measuring cylinder is not graduated allow the tube can be a single line ignore if tube does not appear to go through the stopper not the delivery tube must not go in the reaction mixture ?Examiner's Comments?? Candidates need to take more time when drawing diagrams of apparatus in order to avoid silly errors and mistakes. Most candidates decided to use a gas syringe, although some forgot to show the graduations on the gas syringe. Candidates were often able to draw a diagram to show the use the gas syringe as part as a workable method. Other candidates used a burette and a measuring cylinder but they often did not include them as part of a suitable diagram, for example did not collect the gas by displacement of water. A common misconception was to show the apparatus but not set up as a working method.
	b	i	Moles = 0.0025 / 2.5 × 10 ^{?3} (1)	1	<u>?Examiner's Comments</u> ??
					Many candidates did not understand the relationship between volume, molar volume and moles and as a result did not get the correct answer of 0.0025 moles. A typical incorrect answer was 1.44 moles.

Qu	Question		Answer/Indicative content	Marks	Guidance	
		ii	Mass = 0.25 (g) / 2.5 × 10 ^{?1} (1)	1	allow ecf from number of moles, i.e. moles × 100 ?Examiner's Comments?? Many candidates could not sure the relationship between molar mass, moles and mass in (ii) and as a result did not multiply the answer to (i) by 100. A significant proportion of candidates left (ii) blank.	
			Total	4		

Qı	uestio	n	Answer/Indicative content	Marks	Guidance
17	а		LOOK FOR ANSWER FIRST OF ALL IF concentration = 0.08 (mol/dm ³) AWARD 3 MARKS	3	If answer correct ignore any working out
			no of moles in acid =		
			20×0.100 1000 / 0.02×0.100 / 0.002(1)		
			moles of alkali = 0.002 / moles of acid = moles of alkali (1)		allow ecf from moles of acid
			concentration = $0.08 \text{ (mol/dm}^3)$ (1)		unit not needed
					allow ecf from moles of alkali ie conc =
					$\frac{moles}{0.025} \frac{moles \times 1000}{25}$
					Examiner's Comments
					A small proportion of candidates left this question blank. Candidates often got three marks, with a correct answer of 0.08 mol/dm3, or no marks. Candidates often did not organise their answers and the answer space was full of numbers and equations that made little sense. Candidates would be advised to calculate the moles of hydrochloric acid, then to state that this was the same as the moles of the alkali and finally calculate the concentration of the alkali. By organising their answer candidates will get the opportunity to be awarded marks for error carried forward.

Q	Question		Answer/Indicative content	Marks	Guidance
	b			2	The first mark awarded must refer to a colour change
			single indicator or phenolphthalein only gives a single colour change / gives a sudden colour change (1)		?allow phenolphthalein only has two colours / is either pink or colourless / phenolphthalein changes colour at the end- point ignore clear
			mixed indicator or universal indicator can give several colour changes / mixed indicator gives a gradual colour change		allow universal indicator shows many colours / universal indicator changes colour all the time
			(1)		Examiner's Comments
					Although candidates often appreciated that there was a sudden colour change with phenolphthalein and a gradual colour change with universal indicator, many did not include the word colour in their answer.
			Total	5	
18		i	46 % (2) but	2	answer must have two sig figs for two marks
			46.2 / 46.15 / 46.154 (1)		allow one mark for $\frac{2.4}{5.2} \times 100$
					Examiner's Comments
					Most candidates correctly calculated the percentage yield, but many did not give their answer to two significant figures and therefore scored only 1 mark.
		ii	waste a lot of starting material / wastes reactants (1)	1	ignore waste products ignore just 'a lot of waste' ignore wastes lots of resources
					Examiner's Comments
					Good responses appreciated that a low percentage yield wastes reactants. Most answers were expressed in terms of a large amount of waste products.
			Total	3	

Question	Answer/Indicative content	Marks	Guidance		
Question	Answer/Indicative contentLevel 3 (5-6 marks)Calculates the atom economy for the given reactionANDExplains clearly why an industrial process should have as high an atom economy as possible.Quality of written communication does not impede communication of the science at this level.Level 2 (3-4 marks)Calculates the atom economy for the given reaction ORGives at least two reasons why an industrial process should have as high an atom economy as possible.Quality of written communication partly impedes communication of the science at this level.Level 1 (1-2 marks) Gives a reason why an industrial process should have as high an atom economy as possible OR calculates the required formula masses of magnesium nitrate and water. Quality of written communication impedes communication of the science at this level.Level 0 (0 marks) Insufficient or irrelevant science such as repeating the question. Answer not worthy of credit.	6	Guidance This question is targeted at grades up to A*. Indicative scientific points may include reasons for need for high atom economy: • to reduce the production of unwanted products (makes less waste is not sufficient) • to make the process more sustainable • in this reaction water is the only unwanted product so the process is very green. calculation of atom economy: • recall #dom economy = molecular mass of all of the desired products = 148 • formula mass of magnesium nitrate = 148 • formula mass of all products = 166 • atom economy = 89%. Use the L1, L2, L3 annotations in scorist do not use ticks. Examiner's Comments This 6 mark question focused on the concept of atom economy and was targeted at high demand, i.e. grades B-A'. At the simplest level, a candidate who calculated the required formula masses of magnesium nitrate and water, or gave a reason why an industrial process should have as high an atom economy as possible, scored Level 1. It was usually the formula mass calculation that gained crediat this level. To gain Level 2 candidates needed to show clearly, by calculation, that the atom economy for the reaction is 89%.		

Qı	Question		Answer/Indicative content	Marks	Guidance
					possible, although marks scored in this way were again rarer. As in the other 6 mark questions on the paper, candidates had to address all aspects of the question to gain credit at level 3 (5-6 marks). Many candidates did not explain why an industrial process needs to have as high an atom economy as possible so did not gain credit beyond Level 2.
			Total	6	

Q	uestio	n	Answer/Indicative content	Marks	Guidance
20	a	i	idea that 164g of sodium ethanoate makes 120g of ethanoic acid / idea that 82g of sodium ethanoate makes 60g of ethanoic acid (1) but mass is 6 (2)	2	units not needed Examiner's Comments Candidates who understood the idea of reacting masses were able to correctly calculate the mass of ethanoic acid as 6g. Some candidates tried to calculate a percentage yield or atom economy. Few candidates scored 1 mark for correct working out.
		ii	$\frac{(2 \times 60)}{(2 \times 60) + 142} \times 100 \text{ or } \frac{120}{262} \times 100 \text{ or}$ $\frac{(2 \times 60)}{(2 \times 82) + 98} \times 100 \text{ or } \frac{120}{164 + 98} \times 100 \text{ (1)}$	2	allow full marks for correct answer despite working out
			but 45.8% (2)		allow 46% (2) Examiner's Comments Candidates found the atom economy calculation challenging.
	b		no undesired products made / no waste products made / all the atoms that react end up in the product / only one product made (1)	1	 not the same number of atoms on each side of the equation Examiner's Comments Good responses appreciated that the process has 100% atom economy because there are no waste products. Candidates who failed to gain credit gave answers in terms of conservation of mass.
			Total	5	

Q	uestic	on	Answer/Indicative content	Marks	Guidance
21	a	i	burette (1)	1	Examiner's Comments Less than half of candidates could identify a burette in part (i). Common incorrect answers included 'measuring cylinders', ' pipettes', 'test tube' and 'measuring tube'.
		ii	pipette filler (1) because the liquid is corrosive or harmful or an irritant (1) or (safety) goggles (1) because the liquid is corrosive or harmful or an irritant (1)	2	 allow avoids getting liquid in mouth (1) ignore idea that protects eyes from chemicals allow wear gloves (1) because the liquid is corrosive or harmful or an irritant (1) allow protective clothing (1) because the liquid is corrosive or harmful or an irritant (1) Examiner's Comments The most common safety precautions were to use goggles, gloves or protective clothing. Few candidates mentioned the use of a pipette filler. The idea that these precautions are necessary as the liquids used are corrosive, harmful or irritants was not well understood.
		iii	idea of a colour change (1) but idea of a sudden colour change (2) or starts blue (1) then it changes to purple or red (1)	2	Examiner's Comments Most candidates mentioned a colour change and scored 1 mark. Fewer stated the sudden nature of the colour change or gave the correct colours for before and after neutralisation for the second mark.

Q	Question		Answer/Indicative content				Marks	Guidance
	b		Indicator		Colour in		2	
				Acid	Neutral	Alkali		
			litmus phenolphtha	red	purple	blue		allow purple / lilac / red (1)
			lein	colourless	colourless	pink		
			universal indicator	red, orange or yellow	green	blue or purple		Examiner's Comments
			phenolphtha					Just under half of candidates could recall one of the colours correctly and a further quarter correctly identified both. 'Green'
			universal ind	dicator row o	correct (1)			was the most common correct answer.
			Total				7	
22		i	98 (1)				1	Examiner's Comments
								Some candidates missed out the question but others were able to calculate the relative formula mass as 98. Most candidates could not calculate the atom economy as 12.7%.
		ii	IF atom eco AWARD 2 I	ANSWER FIRST OF ALL momy = 12.7(34) OR 13 MARKS or $\frac{34}{267} \times 100$ or $\frac{34}{34 + 233} \times 100$ (1)			2	 allow <u>M_r of desired product</u> x 100 (1) sum of M_r of all products Examiner's Comments A significant proportion of candidates left this question blank.
			Total				3	

Question	Answer/Indicative content	Marks	Guidance
23	Level 3 (5-6 marks) Candidates correctly calculate the percentage yield and describe some reasons why the yield in this reaction is less than 100%. Quality of written communication does not impede communication of the science at this level. Level 2 (3-4 marks) Candidates correctly calculate the percentage yield OR describe some reasons why the yield in this reaction is less than 100%. Quality of written communication partly impedes communication of the science at this level. Level 1 (1-2 marks) Candidates suggest a reason why the yield is less than 100% in this reaction OR attempt to calculate the % yield e.g. 3/4. Quality of written communication impedes communication of the science at this level.	6	 This question is targeted at grades up to C. Indicative scientific points may include: percentage yield is 75% percentage yield = actual predicted ×100 reasons why yield is not 100% include: loss in filtering solution of magnesium sulfate some product / solution may bubble over the side of beaker some solid / solution may be lost in evaporation loss in transferring solutions / solids not all reactants react to make product. Use the L1, L2, L3 annotations in scoris, do not use ticks. Examiner's Comments Many candidates were able to calculate the percentage yield as 75% and score 4 marks.
	Total	6	
24	red / pink (1)	1	Examiner's Comments The change in colour of phenolphthalein was not well known. Almost all the universal indicator colours were used.
	Total	1	

Qı	Question		Answer/Indicative content	Marks	Guidance
25		i	all atoms in reactants end up in the product (1)	1	 allow only hydrogen peroxide is made / only one product made / no waste products / no unwanted products (1) ignore no product is wasted ignore same number of atoms on each side of the equation / all reactants have been converted into products Examiner's Comments Good responses appreciated that the process has 100% atom economy because there are no waste products. Candidates who failed to gain credit gave answers in terms of conservation of mass.
		ii	reduce the production of unwanted products / reduces amount of waste products (1) makes the process more sustainable (1)	2	reduces waste is not sufficient more cost effective / makes more profit is not sufficient allow makes the process greener (1) ignore better for the environment Examiner's Comments Good responses explained that high atom economy makes industrial processes more sustainable and reduces waste products. When candidates did not gain credit it was usually because they simply stated that high atom economy reduces waste or stated that there would be less waste reactants.
			Total	3	

Qı	Question		Answer/Indicative content	Marks	Guidance		
26			suitable method of collecting gas – graduated gas syringe, measuring cylinder, burette (2)	2	apparatus the method must be method must be method must be method. The method must be method must be method must be method must be method for the method must be method for the method must be method for the method must be method must be method for the method must be method mus	t work Comments drawn diagra vere not used.	tion using aduated but the ams suggesting Many candidates ecting gas over
			Total	2			
27	a		3 rd row – 0.51 (1)	2	mass of magnesium in g	mass of oxygen used in g	mass of magnesium oxide made in g
			4 th row – 0.28 (1)		0.10	0.07	0.17
					0.20	0.14	0.34
					0.30	0.21	0.51
					0.40	0.28	0.68
						Comments lations were a correctly by the	
	b		1.0 (g) (1)	2	allow 1g		
			1.7g magnesium is 10x 0.17 so amount of Mg is 0.1 x 10 (1)			-	n for two marks
					Examiner's	Comments	
						lations were a orrectly by the	
			Total	4			

Q	Question		Answer/Indicative content	Marks	Guidance
28		i	$\frac{22.1+22.3+22.2}{3}$ (1) or 22.2 (1)	1	Examiner's Comments The average titre was calculated correctly by most candidates. A few incorrectly included 22.9 in the calculation.
		ï	titration 1 is not consistent / only consistently close readings should be included / all the other volumes are close to one another / all the other volumes are within 0.2 cm ³ (1)	1	 allow titration 1 is a rough titration / titration 1 is inaccurate / it is a practice titration allow titration 1 is an outlier or anomaly allow it is a very different from the other values e.g. it is (at least) 0.5 cm³ different ignore it does not follow the pattern Examiner's Comments Candidates were able to explain why the titration figure 22.9 was ignored in calculating the average.
			Total	2	

Q	Question		Answer/Indicative content	Marks	Guidance
29	a	i	idea that 2 g of H ₂ makes 34 g of H ₂ O ₂ (1) idea that 100 g of H ₂ is 50 × 2 g so mass of H ₂ O ₂ is 34 × 50 (1)	2	allow $\frac{34}{2} \times 100$ (2) eg H ₂ + O ₂ \rightarrow H ₂ O ₂ (1) 2x 50 = 100 34 x 50 = 1700 allow 32 × 50 = 1600g O ₂ (1) and 100g H ₂ + 1600g O ₂ = 1700g H ₂ O ₂ (1) but 100g + 1600g = 1700g scores 0 if no evidence of other relevant calculation Examiner's Comments Candidates who understood the idea of reacting masses were able to correctly show that the predicted yield of hydrogen peroxide is 1700g.
		ii	LOOK FOR ANSWER FIRST OF ALL IF percentage yield = 90 AWARD 2 MARKS $\frac{1530}{1700} \times 100$ (1) 90 (1)	2	allow $\frac{actual}{predicted} \times 100 \text{ or } \frac{am}{pm} \times 100 \text{ (1)}$ Examiner's Comments Most candidates correctly calculated the percentage yield as 90%.
	b		LOOK FOR ANSWER FIRST OF ALL IF atom economy = 12.7(34) OR 13 AWARD 2 MARKS $\frac{34}{169+98} \times 100 \text{ or } \frac{34}{267} \times 100 \text{ or } \frac{34}{34+233} \times 100 (1)$ 12.7 (1)	2	allow $\frac{M_r of desired product}{sum of M_r of all products}$ Examiner's Comments Responses to this atom economy calculation were better than the similar calculation on the 2014 paper. Incorrect responses usually resulted from 34 divided by 233 (ie the mass of the waste product only) or 34 divided by 534 (ie the mass of the reactants and the products). Incorrect rounding of 12.7%, to give an answer of 12%, was penalised.
			Total	6	

Qı	Question		Answer/Indicative content	Marks	Guidance
30	а	i	no undesired products made / all the atoms that react end up in the product / only one product made (1)	1	ignore no waste is produced but allow no waste products
					allow no atoms have been wasted
					ignore all the atoms are used up Many candidates did not understand the concept of atom economy and as a result could not explain what 100% atom economy means. Very few candidates referred to either the formation of just one product or all of the atoms ending up in the desired product. Many candidates just referred to the same number of atoms before and afterwards which does not necessarily mean 100% atom economy. Many candidates did not attempt this question.
		ii	14 (1)	1	unit not needed
					Examiner's Comments
					The answer of 14 tonnes was calculated by some candidates, but others did not attempt the question.
	b		46 % (2) but	2	answer must have two sig figs for two marks
			46.2 / 46.15 / 46.154 (1)		allow one mark for $\frac{2.4}{5.2} \times 100$
					Examiner's Comments
					Some candidates did not quote their answer to two significant figures and so did not get both marks for the question. The best answers showed the working out and then had the answer correctly rounded to 46% at the end. Some candidates inverted their numbers and obtained a percentage yield above 100%. Other candidates left the question blank.
			Total	4	