1. Helen is making magnesium chloride.

Look at the method Helen uses.

1 Measure $50 \mathrm{~cm}^{3}$ of dilute hydrochloric acid into a beaker.
2 Add magnesium powder until there is no more effervescence.
3 Heat the mixture until saturated.

Helen's method does not make a pure dry sample of magnesium chloride.

How should Helen improve her method to get a pure dry sample of magnesium chloride?
\qquad
\qquad
\qquad
\qquad
\qquad
A student wants to make solid ammonium sulfate from the solution of ammonium sulfate.

What should the student do first?

A Distil the solution.

B Evaporate the solution.

C Filter the solution.

D Use chromatography.

Your answer
3. David wants to make some potassium sulfate solution.

He decides to neutralise an acid with potassium hydroxide.
(i) Which acid should he use?
(ii) David wants to check that a solution of potassium sulfate is neutral.

Write about how he could do this.
\qquad
\qquad
\qquad
4. Alfie is a scientist. He investigates neutralisation.

He adds dilute nitric acid to potassium hydroxide solution.

He uses an indicator called litmus to tell when the solution is neutral.

Complete the word equation for the reaction

5. David wants to make some potassium sulfate solution.

He decides to neutralise an acid with potassium hydroxide.
(i) Which acid should he use?
\qquad
(ii) Describe the experimental method he should use to make potassium sulfate solution.
\qquad
\qquad
\qquad
6. Sarah neutralises dilute sulfuric acid with a base.

She uses sodium hydroxide solution as the base
(i) Write the names of the two compounds made when dilute sulfuric acid is neutralised by sodium hydroxide solution.
and
(ii) Dilute hydrochloric acid contains hydrogen ions.

Sodium hydroxide solution contains hydroxide ions, OH^{-}.

Construct the ionic equation to show the reaction of hydrogen ions with hydroxide ions.

END OF QUESTION PAPER

Mark Scheme

Question		Answer/Indicative content	Marks	Guidance
1		filter off excess magnesium before heating and evaporate to dryness (1) OR filter off excess magnesium before heating, allow to crystallise, filter and dry (1)	1	
		Total	1	
2		B $\sqrt{ }$	1 (AO1.2)	Examiner's Comments Some candidates correctly chose evaporation. Distillation and filtration were common wrong choices.
		Total	1	
3	i	sulfuric acid / H2SO4 (1)	1	allow hydrogen sulfate
	ii	add universal indicator / pH paper (1) if colour goes green it is neutral / match colour with neutral colour (1)	2	allow add (red and blue) litmus (1) the litmus does not change colour (1) allow use a pH meter (1) and it should be pH 7 (1) allow check the pH see if it is 7 (1) mark for colour change must link correctly to indicator used Examiner's Comments Only about a fifth of candidates could identify the acid needed to make a sulfate. Few candidates knew how to test a solution to see if it was neutral.
		Total	3	
4		potassium nitrate (1)	1	allow potassium nitrate solution / potassium nitrate salt (1) allow KNO_{3} (1) Examiner's Comments The word equation proved difficult with only a minority of candidates correctly giving the product as potassium nitrate.
		Total	1	

Question		Answer/Indicative content	Marks	Guidance	
5					

Question		Answer/Indicative content	Marks	Guidance	
6		i	$\begin{array}{l}\text { sodium sulfate / sodium hydrogensulfate } \\ (1) \\ \text { water (1) }\end{array}$	2	allow $\mathrm{Na}_{2} \mathrm{SO}_{4} / \mathrm{NaHSO}_{4}(1)$
		ii	$\begin{array}{l}\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}(2) \\ \text { reactants correct (1) } \\ \text { product correct (1) }\end{array}$	2	allow $\mathrm{H}_{2} \mathrm{O}(1)$

allow \rightleftharpoons instead of \rightarrow

allow any correct multiples\end{array}\right]\)| Total |
| :--- |

