C4.1.3 Halogen Displacement Reactions

Lesson Objectives

Describe displacement reactions involving Group 7 elements

Explain whether a displacement reaction will occur

Review of C4.1.2 Work

Group 7 elements become less reactive as you go down the group

F > CI > Br > I

Model of halogen displacement reactions

Here are five food in order of how much I like them

Chocolate (Yum Yum)
Crisps (Nice)
Pizza (OK)
Peanuts (Not Great)
Gherkins (Yuk)

If I was eating pizza, what would happen if someone offered me some chocolate or crisps?

If I was eating pizza, what would happen if someone offered me some peanuts or gherkins?

Model of halogen displacement reactions

If I am eating food and someone offers me nicer, **more attractive** food, then I will put down the less attractive food and eat the nicer food

If I am eating food and someone offers me less attractive (worse) food, then nothing will change

This is the same for halogens

If an element has formed a compound with a halogen, if a **more** reactive halogen comes along it will react and form a compound with the more reactive halogen

If an element has formed a compound with a halogen, if a **less reactive** halogen comes along, then nothing will change (there will be **no reaction**)

F > CI > Br > I

A more reactive halogen will displace a less reactive halogen from a compound

$$X_2 + 2MY --> 2MX + Y_2$$

If X and Y are halogens and M is a metal

This reaction will only work if X is more reactive than Y

F > CI > Br > I

So for example:

 $F_2 + 2NaCI --> 2NaF + CI_2$

This would work as fluorine is more reactive than chlorine

But: $Br_2 + 2NaCl --> no reaction$

This would not work as bromine is less reactive than chlorine

- Using a plastic pipette put two drops of chlorine solution in each of three dimples in the spotting tile, as shown above.
- Add two drops of potassium chloride solution to each of the three dimples in column 1 of the tile.
- Add two drops of potassium bromide solution to each of the three dimples in column 2 of the tile.
- Add two drops of potassium iodide solution to each of the three dimples in column 3 of the tile.
- Observe and record any colour changes that take place.

Practical Expected Results

	Potassium	Potassium	Potassium
	chloride	bromide	iodide
chlorine	no visible change	Yellow orange colour appears (bromine is forming)	Brown colour appears (iodine is forming)
bromine	no visible change	no visible change	Brown colour appears (iodine is forming)
iodine	no visible	no visible	no visible
	change	change	change

Products of displacement reactions

	Potassium chloride	Potassium bromide	Potassium iodide
chlorine	X	potassium chloride + bromine	Potassium chloride + iodine
bromine	X	X	Potassium bromide + iodine
Iodine	X	X	X