1. Which of these is the best explanation of what is meant by a strong acid?

A There is a large amount of acid and a small amount of water.
B There is a small amount of acid and a large amount of water.
C The acid is completely ionised in solution in water.
D The acid is partially ionised in solution in water.

Your answer \square
2. Explain why the reaction between magnesium and copper sulfate solution is also a reduction/oxidation reaction.

Use ideas about electrons in your answer.
\qquad
\qquad
\qquad
\qquad
3. A scientist investigates an acid solution.

Look at the diagram of the apparatus the scientist uses.

(i) The scientist adds universal indicator to the sodium hydroxide solution.

What colour is the universal indicator in the sodium hydroxide solution?
\qquad
(ii) Universal indicator is a mixed indicator.

Name a single indicator.
\qquad
4. This question is about chemical changes.

Four substances, A, B, C and D are added to four different test tubes of acid.

Look at the table. It shows the results of the experiments.

Substance	Observations	Temperature at start in ${ }^{\circ} \mathrm{C}$	Temperature at end in ${ }^{\circ} \mathrm{C}$
A	stays a white solid	19	19
B	colourless gas given off	23	18
C	solution stays colourless	19	24
D	stays a grey solid	18	18

Two of the substances react with acid to produce a chemical change.

Which two?
\qquad and

Explain your answer.
\qquad
\qquad
\qquad
5. David wants to make some potassium sulfate solution.

He decides to neutralise an acid with potassium hydroxide.
(i) Which acid should he use?
(ii) David wants to check that a solution of potassium sulfate is neutral.

Write about how he could do this.
\qquad
\qquad

6(a). Alfie is a scientist. He investigates neutralisation.

He adds dilute nitric acid to potassium hydroxide solution.

He uses an indicator called litmus to tell when the solution is neutral.

Complete the word equation for the reaction

(b). Complete the table to show the colour of litmus in acidic and alkaline solutions.

Indicator	Colour in		
	Acidic solution	Neutral solution	Alkaline solution
Litmus	$\ldots \ldots \ldots$		

7. Chris is a gardener.

He uses different compounds in his garden.

Look at the table. It shows information about some of these compounds

Compound	Formula	Solubility in water	Use
calcium hydroxide	$\mathrm{Ca}(\mathrm{OH})_{2}$	slightly soluble	soil conditioner
glyphosate	$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{NO}_{5} \mathrm{P}$	highly soluble	weedkiller
ammonium phosphate	$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$	highly soluble	fertiliser
sodium nitrate	NaNO_{3}	highly soluble	fertiliser

Which compound could Chris use to neutralise an acid soil?

Explain why.

8(a). Alfie is a scientist. He investigates neutralisation.

He adds dilute nitric acid to potassium hydroxide solution.

Complete the word equation for the reaction.

potassium hydroxide	+	nitric acid	\rightarrow		+	water

(b). Alfie then reacts sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$, with sodium hydroxide solution, NaOH .

Sodium sulfate and water are made.

Write a balanced symbol equation for this reaction.
9. Ammonium phosphate is used as a fertiliser.

The formula for ammonium phosphate is

$$
\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}
$$

Ammonium phosphate is made by neutralisation.

Complete the word equation with the chemicals needed to make ammonium phosphate

10. Sarah is a farmer.

Look at the table.

It shows information about some of the chemicals Sarah uses while farming.

Chemical	Formula	Colour	State at room temperature	Solubility in water
Ammonia	NH_{3}	colourless	gas	soluble
Ammonium phosphate	$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$	white	solid	soluble
Calcium carbonate	CaCO_{3}	white	solid	insoluble
Potassium sulfate	$\mathrm{K}_{2 \mathrm{SO}}$	white	solid	soluble

Sarah uses one of the solid chemicals to neutralise acid soils.

Which one?
11. Bromine will react with potassium iodide in a displacement reaction.

The ionic equation for this reaction is

$$
\mathrm{Br}_{2}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Br}^{-}+\mathrm{I}_{2}
$$

The reaction involves both oxidation and reduction.

Explain why the reaction involves both oxidation and reduction.
12. Sarah neutralises dilute sulfuric acid with a base.

She uses sodium hydroxide solution as the base
(i) Write the names of the two compounds made when dilute sulfuric acid is neutralised by sodium hydroxide solution.
and
(ii) Dilute hydrochloric acid contains hydrogen ions.

Sodium hydroxide solution contains hydroxide ions, OH^{-}.

Construct the ionic equation to show the reaction of hydrogen ions with hydroxide ions.
13. Sarah tests dilute sulfuric acid.

She wants to find the pH of the acid.

She does not have a pH meter.

Describe how she can find the pH of dilute sulfuric acid.
\qquad
\qquad
\qquad
\qquad
14. Ethanoic acid is a weak acid.

What is the pH of ethanoic acid?

A 1

B 5

C 7

D $\quad 12$

Your answer
15.

Sodium hydroxide reacts with hydrochloric acid.

Sodium chloride and water are made.

Write a word equation for this reaction.

16(a) A student reacts an acid with a metal carbonate.

The student uses universal indicator in his experiment.

Why did the student use universal indicator?
\qquad
\qquad
(b). An acid has a pH of 3 . The hydrogen ion concentration of the acid is $1 \times 10^{-3} \mathrm{~mol} / \mathrm{dm}^{3}$.

A different acid has a pH of 1 .

What is the hydrogen ion concentration of this acid?

Mark Scheme

Question		Answer/Indicative content	Marks	Guidance	
1			C	1	
2			Total Mg loses electrons/Cu gains electrons (1) Mg is oxidised (1) Cu ions are reduced(1)	3	ALLOW oxidation is loss of electrons and reduction is gain of electrons (1)
3			i		

Question			Answer/Indicative content	Marks	Guidance
		ii	add universal indicator / pH paper (1) if colour goes green it is neutral / match colour with neutral colour (1)	2	allow add (red and blue) litmus (1) the litmus does not change colour (1) allow use a pH meter (1) and it should be pH 7 (1) allow check the pH see if it is 7 (1) mark for colour change must link correctly to indicator used Examiner's Comments Only about a fifth of candidates could identify the acid needed to make a sulfate. Few candidates knew how to test a solution to see if it was neutral.
			Total	3	
6	a		potassium nitrate (1)	1	allow potassium nitrate solution / potassium nitrate salt (1) allow KNO_{3} (1) Examiner's Comments The word equation proved difficult with only a minority of candidates correctly giving the product as potassium nitrate.
	b		acidic - red (1) alkaline - blue (1)	2	allow pink not green Examiner's Comments About one third of candidates were able to give the correct colours for litmus in acid and alkaline solution, of the rest approximately half gave one of the colours correctly.
			Total	3	

Question		Answer/Indicative content	Marks	Guidance	
7			mark independently calcium hydroxide / Ca(OH)2 (1) because it is an alkali or base (1)	2	

Question		Answer/Indicative content	Marks	Guidance
8	a	potassium nitrate (1)	1	allow potassium nitrate solution / potassium nitrate salt (1) allow KNO_{3} (1) Examiner's Comments This question was answered correctly by the majority of candidates. The correct answer was potassium nitrate, however, salt and nitric oxide were also offered.
	b	$\begin{aligned} & 2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \text { ? } \mathrm{Na} 2 \mathrm{SO} 4+2 \mathrm{H}_{2} \mathrm{O} \\ & \text { formulae (1) } \\ & \text { balancing (1) } \end{aligned}$	2	balancing mark is conditional on correct formulae but allow one mark for balanced equation with minor errors of subscripts, superscripts, etc. e.g. $2 \mathrm{NAOH}+\mathrm{H}_{2} \mathrm{SO}_{4} ? \mathrm{Na}_{2} \mathrm{So}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ not and or \& for + allow $=$ instead of ? allow correct multiples eg $4 \mathrm{NaOH}+$ $2 \mathrm{H}_{2} \mathrm{SO}_{4} ? 2 \mathrm{Na}_{2} \mathrm{SO}_{4}+4 \mathrm{H}_{2} \mathrm{O}$ Examiner's Comments Candidates could not recall the formula of sodium sulfate and as a result could not write a balanced equation. Many of the equations presented were not balanced and had unusual formulae for sodium sulfate e.g. NaS and NaSO 4 .
		Total	3	

Question		Answer/Indicative content	Marks	Guidance
9		ammonia / ammonium hydroxide (1) phosphoric acid (1)	2	order unimportant allow $\mathrm{NH}_{3} / \mathrm{NH}_{4} \mathrm{OH}$ (1) allow ammonium hydrogencarbonate or ammonium carbonate (1) not ammonium not ammonia hydroxide or ammonia carbonate or ammonia hydrogencarbonate allow $\mathrm{H}_{3} \mathrm{PO}_{4}$ (1) not phosphorus acid Examiner's Comments Few candidates scored both marks on this question. Ammonia was the most common correct answer. Weaker candidates confused this with the Haber process for ammonia production and gave nitrogen and hydrogen. Phosphorus was a common incorrect answer.
		Total	2	
10		calcium carbonate / CaCO_{3} (1)	1	Examiner's Comments Although some candidates gave calcium carbonate, a significant proportion of candidates gave potassium sulfate instead.
		Total	1	

Mark Scheme

Question		Answer/Indicative content	Marks	Guidance
11		bromine is reduced since it gains electrons (1) iodide is oxidised since it loses electrons (1)	2	allow $\mathrm{Br}_{2} / \mathrm{Br}$ is reduced since it gains electrons ignore bromide $/ \mathrm{Br}^{-}$ allow l^{-1} is oxidised since it loses electrons ignore iodine $/ \mathrm{I} / \mathrm{I}_{2}$ ignore potassium if no other mark scored then allow one mark for oxidation is loss of electrons / reduction is gain of electrons / if oxidation and reduction are not mentioned allow electrons are both lost and gained (1)
		Total	2	
12	i	sodium sulfate / sodium hydrogensulfate (1) water (1)	2	$\text { allow } \mathrm{Na}_{2} \mathrm{SO}_{4} / \mathrm{NaHSO}_{4}(1)$ allow $\mathrm{H}_{2} \mathrm{O}$ (1)
	ii	$\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$ reactants correct (1) product correct (1)	2	allow OH_{2} for water (1) allow \rightleftharpoons instead of \rightarrow allow any correct multiples
		Total	4	
13		use universal indicator (1) match colour with a pH / chart (1)	2	allow pH paper ignore pH meter / pH probe / pH scale not litmus paper / single phase indicator / incorrect reagents allow correct link between a colour and a pH value e.g. if green pH is 7 (1) ignore just 'look for colour' / just match colour allow this mark if no indicator is named but do not award this mark if the name of the indicator is incorrect
		Total	2	

Question		Answer/Indicative content	Marks	Guidance			
16	a		$\begin{array}{l}\text { To measure } \mathrm{pH} / \text { to tell when the acid is } \\ \text { neutralised } \checkmark\end{array}$	$\begin{array}{c}1 \text { (AO } \\ 1.2)\end{array}$	$\begin{array}{l}\text { ALLOW to see if it is acid or alkaline } \\ \text { Examiner's Comments } \\ \text { Most candidates could give the purpose of }\end{array}$		
using universal indicator to determine the							
pH of the reaction.						$]$	b
:---							

