1 (a). This question is about making copper.

Copper is made using a displacement reaction.

Magnesium is added to copper sulfate solution, CuSO_{4}.

Copper and magnesium sulfate solution, MgSO_{4}, are made.

Write a balanced symbol equation for this reaction.
(b).
(i) In the reaction magnesium atoms become magnesium ions, Mg^{2+}, and copper ions, Cu^{2+}, become copper atoms.

Write a balanced ionic equation for this reaction.
\qquad
(ii) Write a balanced half equation to show what happens to magnesium in this reaction.

Use e^{-}to represent an electron.
2. Magnesium chloride, MgCl_{2}, can be made by reacting hydrochloric acid, HCl , with magnesium carbonate, MgCO_{3}.

Look at the equation for the reaction.

$$
2 \mathrm{HCl}+\mathrm{MgCO}_{3} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

Helen uses 2.8 g of magnesium carbonate.

Calculate how much magnesium chloride she should make.

Give your answer to two significant figures.

Relative formula mass of magnesium carbonate $=84.3$

Relative formula mass of magnesium chloride $=95.3$
\qquad
\qquad
answer -
3. Copper obtained from copper oxide is purified by electrolysis.

At the cathode, copper ions, Cu^{2+}, gain electrons.

Copper atoms are formed.

Write a balanced half equation for the reaction.

Use e^{-}to represent an electron.

4(a). Sodium, Na , reacts with oxygen, O_{2}, to make sodium oxide.

Sodium oxide contains the ions, Na^{+}and $\mathrm{O}^{2 ?}$.

Explain how you can tell that O_{2} is a molecule but $\mathrm{O}^{2 ?}$ is an ion.
\qquad
\qquad
\qquad

(b). Use the charges of the ions in sodium oxide to work out the formula of sodium oxide.

5(a). Soldiers use 'flameless heaters' to heat their meals.

The 'flameless heater' heats the food safely and quickly without using a flame.

The heater uses a chemical reaction between magnesium metal and water.

$$
\mathrm{Mg}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{H}_{2}
$$

Look at the equation.

Write down the formula for one reactant in this reaction.
(b). The reaction is exothermic.

What is meant by an exothermic reaction?
\qquad
(c). A scientist is trying to improve the 'flameless heaters' so that they heat the food more quickly.

Look at her results.

Heater	Temperature rise in the heater in ${ }^{\circ} \mathrm{C}$	Time taken in minutes
A	40	8
B	42	7
C	24	6
D	50	10

Which heater heats up quickest?

Explain your answer using the temperature rise and time taken.
\qquad
\qquad
6. Pete and Helen investigate the reaction between marble chips (calcium carbonate) and nitric acid.

Calcium nitrate, carbon dioxide and water are made.

Write the word equation for this reaction.

7(a). Sam investigates what happens when she heats different metal carbonates.

Look at the apparatus she uses.

Sam measures the mass of metal carbonate then heats it.

She measures the mass of solid left in the test tube after it has cooled down.

Look at her results in Table 8.

Metal carbonate	Mass of metal carbonate in g	Mass of solid in test tube after heating in g
copper carbonate	2.50	1.61
iron(II) carbonate	2.50	1.55
manganese carbonate	2.50	1.54
potassium carbonate	1.25	1.25
sodium carbonate	2.50	2.50
zinc carbonate	2.50	1.62

Table 8

Some metal carbonates decompose when heated.

$$
\text { metal carbonate } \rightarrow \text { metal oxide }+ \text { carbon dioxide }
$$

(i) Calculate the mass of carbon dioxide made when manganese carbonate is heated.
mass of carbon dioxide $=$ \qquad
(ii) Manganese carbonate produces the greatest percentage by mass of carbon dioxide.

How can you tell from the results?
\qquad
\qquad
\qquad
(b). Manganese carbonate has the formula MnCO_{3}.

Write the balanced symbol equation for the decomposition of manganese carbonate.
8. Sodium, Na , reacts with water, $\mathrm{H}_{2} \mathrm{O}$.

Sodium hydroxide, NaOH , and hydrogen, H_{2}, are made.

Write a balanced symbol equation for this reaction.
9. Sodium reacts with iodine.

Sodium iodide is made.

Write the word equation for this reaction.
10. Ethanol has the formula $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$.

Ethanol burns in oxygen, O_{2}.

Carbon dioxide and water are made.

Write a balanced symbol equation for this reaction.
11. Jan and Mike investigate the reaction between magnesium lumps and hydrochloric acid, HCl .

Magnesium chloride solution, MgCl_{2}, and hydrogen gas, H_{2}, are made.

Write a balanced symbol equation for this reaction.
12. Harneet and Mike investigate the reaction between sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, and hydrochloric acid, HC .

Sodium chloride NaCl , sulfur dioxide SO_{2}, sulfur S and water $\mathrm{H}_{2} \mathrm{O}$ are made.

Write a balanced symbol equation for this reaction.
13. Aspirin is a painkiller used to treat headaches and reduce fevers.

A pharmaceutical company makes aspirin using the following reaction.

$$
\text { salicylic acid + ethanoic anhydride } \rightarrow \text { aspirin + ethanoic acid }
$$

A scientist reacts 6.9 g salicylic acid with 5.1 g of ethanoic anhydride.

She makes 3.0 g of ethanoic acid and some aspirin.

Calculate the mass of aspirin that she makes. Use the principle of conservation of mass.
14. Sodium chloride is found in sea water.

It is an important raw material used in the chemical industry.

Sodium chloride solution can be chemically changed into:

- sodium hydroxide
- chlorine
- hydrogen.

Look at the symbol equation for this reaction. It is not balanced.

$$
\mathrm{Nacl}+\mathrm{H}_{2} \mathrm{O} ? \mathrm{NaOH}+\mathrm{H}_{2}=\mathrm{Cl}_{2}
$$

Write down the balanced symbol equation for this reaction.
15. The air may contain different pollutants.

Look at the table.

It shows the relative concentration of pollutants found in the air in two places.

Pollutant	Molecular formula	Relative concentration in the air	
		in a city centre	near a volcano
carbon monoxide	CO	0.3	0.01
hydrogen sulfide	$\mathrm{H}_{2} \mathrm{~S}$	0.01	210
nitrogen dioxide	NO_{2}	1.5	0.1
sulfur dioxide	SO_{2}	200	1500
trichlorofluoromethane	CFCl_{3}	0.01	0.005

Write down the names of two of the pollutants that have molecules with only three atoms.

16(a) Duncan investigates the combustion of four different fuels.

He burns the same amount of fuel in each experiment.

Look at his results.

Fuel	Is carbon dioxide		
made?		\quad	Is carbon monoxide
:---:			
made?	\quad Is soot made? \quad Energy given out in J		

In each experiment Duncan tests to see if carbon dioxide is made.

Write about how Duncan tests for carbon dioxide.
\qquad
\qquad
(b). Fuel A is ethanol.

Ethanol burns in oxygen.

Carbon dioxide and water are made.

Write the word equation for this reaction.
\qquad
17. Look at this equation. It shows the complete combustion of ethanol.

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{xO}_{2} \rightarrow \mathrm{yCO}_{2}+\mathrm{zH}_{2} \mathrm{O}
$$

What are the numbers x, y and z that balance this equation?
x \qquad
$y=$ \qquad
z = \qquad

18(a) Chris is a gardener.

He uses different compounds in his garden.

Look at the table. It shows information about some of these compounds

Compound	Formula	Solubility in water	Use
calcium hydroxide	$\mathrm{Ca}(\mathrm{OH})_{2}$	slightly soluble	soil conditioner
glyphosate	$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{NO}_{5} \mathrm{P}$	highly soluble	weedkiller
ammonium phosphate	$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$	highly soluble	fertiliser
sodium nitrate	NaNO_{3}	highly soluble	fertiliser

How many different elements are in glyphosate?
answer
(b). What is the total number of atoms in the formula for sodium nitrate?
answer
19. Magnesium reacts with hydrochloric acid.

Hydrogen and magnesium chloride are made.

Write down the word equation for this reaction.
20. Hydrogen peroxide solution breaks down to make water and oxygen.

$$
\text { hydrogen peroxide } \rightarrow \text { water }+ \text { oxygen }
$$

In an experiment 6.8 g of hydrogen peroxide makes 3.2 g of oxygen.
(i) Use the principle of conservation of mass to predict the mass of water made.
mass of water = ----------------------------- 9
(ii) What mass of oxygen can be made from 680 g of hydrogen peroxide?
mass of oxygen = --------------------------- 9
21. Look at the balanced symbol equation for the combustion of propane.

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

(i) Write down the formula for a product in this reaction.
\qquad
(ii) Explain how you can tell that the equation is balanced.
22. The table shows some common ions.

Negative ions			Positive ions
Nitrate	$\mathrm{NO}_{3}-$	Aluminium	$\mathrm{A} \beta^{3+}$
Oxide	O^{2-}	Magnesium	Mg^{2+}

Write the formula for aluminium oxide.

23(a) The table shows some common ions.

Negative ions		Positive ions	
Nitrate	$\mathrm{NO}_{3}-$	Aluminium	Al^{3+}
Oxide	O^{2-}	Magnesium	Mg^{2+}

Write the formula for aluminium oxide.
(b). A teacher wrote the formula for magnesium nitrate as:
MgNO_{3}

A student says that the formula is incorrect.

Who is right? Explain your answer.
\qquad

Mark Scheme

Question			Answer/Indicative content	Marks	Guidance
1	a		$\mathrm{Mg}+\mathrm{CuSO}_{4} \longrightarrow \mathrm{Cu}+\mathrm{MgSO}_{4}(1)$	1	
	b	i	$\mathrm{Mg}+\mathrm{Cu}^{2+} \longrightarrow \mathrm{Mg}^{2+}+\mathrm{Cu}(2)$	2	ALLOW $\mathrm{Mg}+\mathrm{Cu}^{2+}$ (1) (reactants) ALLOW $\mathrm{Mg}^{2+}+\mathrm{Cu}$ (1) (products)
		ii	$\mathrm{Mg} \longrightarrow \mathrm{Mg}^{2+}+2 \mathrm{e}^{-} / \mathrm{Mg}-2 \mathrm{e}^{-} \longrightarrow \mathrm{Mg}^{2+}$ (2)	2	ALLOW $\mathrm{Mg} \longrightarrow \mathrm{Mg}^{2+}(1)$
			Total	5	
2			$2.8 \div 84.3=0.033$ moles used so 0.033 moles MgCl_{2} made (1) $0.033 \times 95.3=3.2(1)$ but mass is $3.2(\mathrm{~g})(2)$	2	ALLOW idea that 84.3 g of magnesium carbonate makes 95.3 g of magnesium chloride for one mark unit not needed ALLOW 3.17 (g) for 1 mark if no other mark awarded DO NOT ALLOW 3.16 (g) Award 2 marks if answer on answer line $=$ 3.2 (g)
			Total	2	
3			$\begin{aligned} & \mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu} \\ & \text { formulae (1) } \\ & \text { balancing (1) } \end{aligned}$	2	balancing mark is conditional on correct formulae ALLOW any correct multiple $\text { e.g. } 2 \mathrm{Cu}^{2+}+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cu}$ ALLOW $=$ or \rightleftharpoons for arrow DO NOT ALLOW 'and' or \& for + ALLOW one mark for correct balanced equation with incorrect use of upper and lower case formulae e.g. $\mathrm{Cu} 2++2 \mathrm{e}^{-} \rightarrow \mathrm{CU}$
			Total	2	

Question		Answer/Indicative content	Marks	Guidance	
4	a		O_{2} contains two (oxygen) atoms (1) $\mathrm{O}^{2 ?}$ has a charge / has a negative charge / has a 2? (1)	2	ignore does not have a charge allow is negative / has gained electrons (1) Examiner's Comments Candidates were asked how they knew
b		$\mathrm{Na}_{2} \mathrm{O} / \mathrm{ONa}_{2}(1)$	1	that O_{2} was a molecule and $\mathrm{O}^{? 2}$ was an ion. Few candidates stated that the molecule had two oxygen atoms but the majority of candidates were able to say the ion could be identified because it was charged.	

Question		Answer/Indicative content	Marks	Guidance
5	a	$\mathrm{Mg} / \mathrm{H}_{2} \mathrm{O}$ (1)	1	any incorrect formula is zero $\text { allow } 2 \mathrm{H}_{2} \mathrm{O} / \mathrm{Mg}+\mathrm{H}_{2} \mathrm{O} / \mathrm{Mg}+2 \mathrm{H}_{2} \mathrm{O}$ allow correct answer ticked, circled or underlined in equation if answer line is blank ignore magnesium and water Examiner's Comments Most candidates did not score here. If they could identify a reactant they usually named it rather than giving the formula. Of those that got it correct, Mg was much a more common response than $\mathrm{H}_{2} \mathrm{O}$.
	b	energy given out or heat given out (1)	1	allow temperature increase allow heat or energy produced / made / exits / released allow energy or heat is lost (limit of acceptability) ignore gives more energy NOT energy or heat is created Examiner's Comments Many candidates knew this, or if not, left it blank.
	c	B (1) largest temperature rise per minute (1)	2	allow all correct calculations of temperature rise per minute in table (A ? 5% min; B ? $6 \% \mathrm{~min}$; C $4^{\circ} / \mathrm{min}$; D ? $5^{\circ} / \mathrm{min}$) Examiner's Comments Of the candidates that scored on this question many candidates got B but few gave the correct reason. Those that got the second mark normally got it for a correct column of numbers against the table, but most struggled to manipulate data to make a comparison.
		Total	4	

Mark Scheme

Question			Answer/Indicative content	Marks	Guidance
6			```calcium carbonate + nitric acid } calcium nitrate + carbon dioxide + water (1)```	1	allow $=$ instead of \rightarrow not and / \& / instead of + allow correct formulae but equation does not need to balance e.g. $\mathrm{CaCO}_{3}+$ $\mathrm{HNO}_{3} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ allow mix of correct formulae and words Examiner's Comments Most candidates answered this well. Most put the arrow and plus signs in the correct place. However, a few missed off water at the end.
			Total	1	
7	a	i	0.96 (g) (1)	1	
		ii	all metal carbonates (that decomposed) had the same starting mass (1) idea that this is the least amount of solid left / most mass lost (so the greatest amount of gas produced) (1)	2	allow decomposed the most lowest mass of solid left in relation to mass of carbonate (2) allow four correct percentage calculations (2) Examiner's Comments Most candidates could calculate the mass of carbon dioxide and explain how you could tell which carbonate produced the most but explaining the concept of percentage change was very challenging.
	b		MnCO_{3} ? $\mathrm{MnO}+\mathrm{CO}_{2}(1)$	1	allow any correct multiple not heat in the equation rather than over the equation all formulae must be completely correct Examiner's Comments There were a significant minority of candidates that confused manganese with magnesium.
			Total	4	

| Question | | Answer/ndicative content | Marks | Guidance |
| :--- | :--- | :--- | :---: | :--- |$|$| 8 | |
| :--- | :--- |

Question		Answer/Indicative content	Marks	Guidance
14		$2 \mathrm{NaCl}+2 \mathrm{H}_{2} \mathrm{O} ? 2 \mathrm{NaOH}+\mathrm{H}_{2}+\mathrm{Cl}_{2}$	1	allow any correct multiple including fractions allow $=$ instead of ? allow balanced equation on the line or on the original equation. If there is a contradiction take the answer on the answer line. not \& or and instead of + ignore poor use of case or subscript Examiner's Comments Only a minority of candidates were able to balance the equation correctly.
		Total	1	
15		any two from: hydrogen sulfide, sulfur dioxide or nitrogen dioxide (1)	1	if any other gas included then award 0 marks allow $\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}, \mathrm{NO}_{2}$ Examiner's Comments Most candidates got the mark, but there was also a few gases named that weren't in the table.
		Total	1	

Question		Answer/Indicative content	Marks	Guidance
16	a	(use) limewater / calcium hydroxide (1) then (which goes) cloudy (1)	2	The second marking point is dependent on the correct chemical ignore any reference to method ignore use of an indicator / litmus paper ignore reference to blowing through a straw allow goes milky / goes white (1) allow a white solid or white precipitate or white suspension is formed (1) ignore put out lighted splint Examiner's Comments Many candidates referred back to the results table and suggested that the amount of energy given out would indicate whether carbon dioxide was made. Answers in terms of the colour of the flame also did not gain credit.
	b	ethanol + oxygen ? carbon dioxide + water	1	allow = or ? instead of ? not and / \& / instead of + not ' + heat' in equation, but allow heat above arrow allow correct formulae but equation does not need to balance e.g. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{O}_{2}$? $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ allow mix of correct formulae and words not eg ethanal / ethonal + oxygen ? carbon dioxide + water Examiner's Comments Many candidates were able to write a correct word equation for the combustion of ethanol. When candidates did not gain credit it was often because they used 'and' or an ? instead of ' + '. Omitting oxygen as a reactant was also a common error.
		Total	3	

Question		Answer/Indicative content	Marks	Guidance
17		$\begin{aligned} & x=3 \\ & y=2 \\ & z=3(1) \end{aligned}$	1	all three required for the mark Examiner's Comments Only the more able students could balance the equation. Some candidates thought that value of x was carbon turning the oxygen into carbon dioxide. This suggests they had not clearly read the question that states that x, y and z are all numbers.
		Total	1	
18	a	5 (1)	1	Examiner's Comments Very few candidates understood how to count the number of elements and atoms in the compounds. Many thought NO was one element and so gave the answer for atoms in $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{NO}_{5} \mathrm{P}$ as 4 or they calculated the actual number of atoms. For NaNO_{3} they neglected to include three oxygen or they multiplied everything by 3 .
	b	5 (1)	1	Examiner's Comments Very few candidates understood how to count the number of elements and atoms in the compounds. Many thought NO was one element and so gave the answer for atoms in $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{NO}_{5} \mathrm{P}$ as 4 or they calculated the actual number of atoms. For NaNO_{3} they neglected to include three oxygen or they multiplied everything by 3 .
		Total	2	

Mark Scheme

Question		Answer/Indicative content	Marks	Guidance
19		magnesium + hydrochloric (acid) \rightarrow magnesium chloride + hydrogen (1)	1	allow $=$ or \rightleftharpoons instead of arrow (1) not 'and' or ' $\&$ ' instead of + allow correct formulae instead of names the equation does not have to be balanced. $\mathrm{Mg}+\mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$ allow a mixture of names and correct formulae ignore 'hydrolic'
		Total	1	
20	i	3.6 (g)	1	
	ii	$320(\mathrm{~g})(2)$ BUT if answer is incorrect then use of $680 / 6.8$ or idea that $100 \times$ more hydrogen peroxide used (1)	2	allow full marks for correct answer even with incorrect working out
		Total	3	
21	i	$\mathrm{CO}_{2} / \mathrm{H}_{2} \mathrm{O}$ (1)	1	allow $3 \mathrm{CO}_{2} / 4 \mathrm{H}_{2} \mathrm{O}$ (1) allow $\mathrm{CO} 2 / \mathrm{CO}^{2} / \mathrm{H} 2 \mathrm{O} / \mathrm{H}^{2} \mathrm{O}$ (1) (as mark is for identifying a product) allow carbon dioxide / water (1) if two answers given and one incorrect $=0 \mathrm{marks}$
	ii	idea of same number of each type of atom on LHS and RHS (1)	1	allow same number of each different element on LHS and RHS (1) ignore same number of atoms on LHS and RHS
		Total	2	

Question		Answer/Indicative content	Marks	Guidance
23	a	$\mathrm{Al}_{2} \mathrm{O}_{3} \checkmark$	$\begin{aligned} & 1 \text { (AO } \\ & 2.1 \end{aligned}$	ALLOW $\mathrm{O}_{3} \mathrm{Al}_{2}$ DO NOT ALLOW A ${ }^{2} \mathrm{O}_{3}$ Examiner's Comments Only higher ability candidates were credited credit here. There were a variety of answers that were not awarded credit including $\mathrm{Al}_{3} \mathrm{O}_{2}, 2 \mathrm{AlO}_{3}$ and AIO . Candidates also quoted ions rather than formula without the charges. Exemplar 2 \qquad This was a common incorrect response. The candidate perhaps knows the number of each atom present in the formula but has incorrectly expressed the formula so cannot be given credit.
	b	Teacher is wrong / student is right (no mark) Any one from: Formula should be $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \checkmark$ Idea that charges do not balance as Mg ion is $2+$ and NO_{3} is $1-\checkmark$ The ratio of ions is $1: 2\left(\mathrm{Mg}: \mathrm{NO}_{3}\right) \checkmark$	$\begin{aligned} & 1(\mathrm{AO} \\ & 3.1 \mathrm{~b}) \end{aligned}$	Mark is for explanation - Who is right or wrong can be implied in response. ALLOW MgNO3 would be charged (+) Examiner's Comments A large number of candidates realised that the candidate was correct and not the teacher. This was not creditworthy. The reason for their decision was where the mark was credited. Candidates could either say why the teacher was wrong or give the correct formula. There was a variety of incorrect responses mainly around the candidate's inability to communicate the lack of balance of the charges of the ions in the formula as well as the incorrect idea of transfer of electrons.

Question		Answer/Indicative content	Marks	Guidance
		Total	2	

