1. The molecular formula of cyclohexane is $\mathrm{C}_{6} \mathrm{H}_{12}$.

What is the empirical formula of cyclohexane?

A CH
B CH_{2}
C $\mathrm{C}_{6} \mathrm{H}_{12}$
D $\mathrm{C}_{12} \mathrm{H}_{24}$

Your answer \square
2. A student has a solution of ammonium sulfate.

Describe how he can obtain a pure dry sample of ammonium sulfate.
\qquad

3. Tim is separating the colours in a sample of black ink using paper chromatography.

He puts a spot of black ink onto filter paper.

He dips the filter paper into ethanol in a beaker.

What is the name given to ethanol in this experiment?

A gas phase
B mobile phase
C solid phase
D stationary phase

Your answer \square
4. Look at Tim's chromatogram.

What is the R_{f} value of the green spot? Use a ruler to help you.

A 0.17
B 0.42
C 0.83
D 1.00

Your answer \square
5. The molecular formula of decene is $\mathrm{C}_{10} \mathrm{H}_{20}$.

What is the empirical formula of decene?

A CH_{2}
B $\mathrm{C}_{2} \mathrm{H}_{4}$
C $\mathrm{C}_{5} \mathrm{H}_{10}$
D $\mathrm{C}_{20} \mathrm{H}_{40}$

Your answer \square

6(a). A student is separating a mixture of three substances, A, B and \mathbf{C}.

Look at the table. It gives information about these substances.

Substance	State at room temperature	Melting point ($\left.{ }^{\circ} \mathrm{C}\right)$	Boiling point ($\left.{ }^{\circ} \mathrm{C}\right)$	Solubility in water
A	liquid	0	100	soluble
B	liquid	-117	78	soluble
C	solid	1535	2750	insoluble

A and B mix together completely.

* Suggest how the student can separate the mixture to get pure samples of substances \mathbf{A}, \mathbf{B} and \mathbf{C}.

Explain in detail how each method works.
\qquad
(b). The student has separated a pure sample of substance \mathbf{B} from the mixture.

Suggest how the student can check that the sample of substance B is pure.
\qquad
\qquad
\qquad
7. Which technique is the best for separating pure water from a solution of sodium chloride in water?

A crystallisation
B chromatography
C filtration
D distillation

Your answer \square
8. The molecular formula of decene is $\mathrm{C}_{10} \mathrm{H}_{20}$.

What is the empirical formula of decene?

A CH_{2}
B $\mathrm{C}_{2} \mathrm{H}_{4}$
C $\mathrm{C}_{5} \mathrm{H}_{10}$
D $\mathrm{C}_{20} \mathrm{H}_{40}$

Your answer \square
9. Phil is a research chemist.

He investigates a new pharmaceutical drug.

Phil extracts the drug from the leaves of a plant.

He purifies the drug and then checks to see if he has made a pure sample.

Phil uses two tests to check the purity of the drug

- melting point
- thin layer chromatography.

Look at the results of his tests.

Melting point

Substance	Melting point in ${ }^{\circ} \mathbf{C}$
pure drug	175
sample of the drug obtained from plant	$171-173$

Thin layer chromatogram of sample of the drug obtained from the plant.

Write about how a sample of the drug is obtained from the leaves of a plant.

What do the results of his tests show about the purity of the sample?

The quality of written communication will be assessed in your answer to this question.
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
10. Sodium hydrogencarbonate decomposes when it is heated.

sodium hydrogencarbonate	\rightarrow	sodium carbonate	+	carbon dioxide	+	water
$2 \mathrm{NaHCO}_{3}$	\rightarrow	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	+	CO_{2}	+	$\mathrm{H}_{2} \mathrm{O}$

The table shows the relative formula masses, M_{r}, of the substances in the equation.

Substance	Relative formula mass
NaHCO_{3}	84
$\mathrm{Na}_{2} \mathrm{CO}_{3}$	106
CO_{2}	44
$\mathrm{H}_{2} \mathrm{O}$	18

Show that the relative formula mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is 106 .

The relative atomic mass, A_{r}, of $\mathrm{C}=12, \mathrm{O}=16$ and of $\mathrm{Na}=23$.
11. Phil is a research chemist.

He investigates a new pharmaceutical drug.

Phil extracts the drug from the leaves of a plant.

He purifies the drug and then checks to see if he has made a pure sample.

Phil uses two tests to check the purity of the drug

- melting point
- thin layer chromatography.

Look at the results of his tests.

Melting point

Substance	Melting point in ${ }^{\circ} \mathrm{C}$
pure drug	175
sample of the drug obtained from plant	$171-173$

Thin layer chromatogram of sample of the drug obtained from the plant.

Write about how a sample of the drug is obtained from the leaves of a plant.

What do the results of his tests show about the purity of the sample?
\qquad
12. Crude oil is separated into many fractions by fractional distillation.

The diagram shows a fractionating column.
fractions

Look at the table. It shows the boiling point range for some of the fractions.

Fraction	Boiling point range in ${ }^{\circ} \mathbf{C}$
bitumen	above 350
heating oil	240 to 350
paraffin	120 to 240
petrol	20 to 70
LPG	-160 to 20

Write down the name of the fraction which 'exits' from the bottom of the fractionating column.

13(a). Stowmarket Synthetics manufacture ethanoic acid, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$, by two different processes.

Process 1
Process 2

$$
\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+\mathrm{O}_{2} ? \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

$$
\mathrm{CH}_{4} \mathrm{O}+? \mathrm{CO} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}
$$

Look at the table of relative formula masses.

Compound	Formula	Relative formula mass, Mr
ethanol	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	
oxygen	O_{2}	32
ethanoic acid	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	60
water	$\mathrm{H}_{2} \mathrm{O}$	18
methanol	$\mathrm{CH}_{4} \mathrm{O}$	32
carbon monoxide	CO	28

The relative atomic mass of $\mathrm{H}=1$, of $\mathrm{C}=12$, and of $\mathrm{O}=16$.

Calculate the relative formula mass of ethanol, $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$.
\qquad
\qquad
\qquad
relative formula mass = \qquad
(b). In process 2 Stowmarket Synthetics use 320 g of methanol.

They make 600 g of ethanoic acid.

What mass of carbon monoxide do they need?
\qquad
\qquad
mass of carbon monoxide $=$ g
(c). Stowmarket Synthetics know that the atom economy of a process is important.

Water is a waste product in process 1.

Show that the atom economy for making ethanoic acid by process 1 is 77%.
\qquad
\qquad
(d). Stowmarket Synthetics also know that the percentage yield of a process is important.

The factory uses 5.2 tonnes of methanol in process 2.

A scientist predicts they should make 9.8 tonnes of ethanoic acid.

They actually make 9.5 tonnes of ethanoic acid.

Show that the percentage yield of ethanoic acid is 97%.
\qquad
\qquad
\qquad

14. A compound found on Mars has the molecular formula $\mathrm{C}_{4} \mathrm{H}_{10}$.

What is the empirical formula for this compound?

15(a). Another compound found on Mars has the molecular formula $\mathrm{C}_{4} \mathrm{H}_{10}$.

What is the empirical formula for this compound?
(b). Another compound found on Mars contains iron and oxygen.

The compound contains 70% by mass of iron and 30% by mass of oxygen.

Calculate the empirical formula of this compound.

The relative atomic mass, Ar , of $\mathrm{O}=16$ and of $\mathrm{Fe}=56$.
empirical formula is \qquad
16. Look at the molecular formula of some compounds.

Which two compounds have the same empirical formula?

Choose from

answer \qquad and \qquad
17. Look at the molecular formula of these compounds.

Which two compounds have the same empirical formula?

Choose from

CH_{4}	$\mathrm{C}_{2} \mathrm{H}_{2}$	$\mathrm{C}_{2} \mathrm{H}_{4}$
$\mathrm{C}_{2} \mathrm{H}_{6}$	$\mathrm{C}_{3} \mathrm{H}_{4}$	$\mathrm{C}_{6} \mathrm{H}_{6}$

answer \qquad and \qquad
18. Fractional distillation separates crude oil into useful fractions.

The fractions have different boiling temperatures.

Look at the table.

It shows some information about fractions obtained from crude oil.

Fraction	Boiling temperature in ${ }^{\circ} \mathbf{C}$
bitumen	above 350
LPG	less than 40
fuel oil	$300-350$
heating oil	$250-300$
petrol	$40-200$
paraffin	$200-250$

Use ideas about intermolecular forces to explain how fractional distillation separates crude oil into fractions and list the fractions in the position, from top to bottom, that they 'exit' the fractionating column.

The quality of written communication will be assessed in your answer to this question.
\qquad

END OF QUESTION PAPER

Question		Answer/Indicative content	Marks	Guidance	
1			B	1	
			Total	1	
2		Slow evaporation of solution / heat solution over a steam bath (1)	1		
		Total	1		
3			B	1	
4		Total	1		
		C	1		
5		Total	1		
		A	1		

Question		Answer/Indicative content	Marks	Guidance
6	a	*Please refer to point 10 of the marking instructions of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Suggestion would enable pure samples of all three components to be obtained in the correct sequence with clear explanations of why the methods work. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Suggestion would enable pure samples of two of the components of the mixture to be obtained with an attempt at an explanation. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Suggestion would enable a pure sample of one of the components to be obtained. The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit.	6	A01.2: Knowledge of process of fractional distillation - Use fractional distillation to separate substance A from substance B. - Substance B will come off first as it has lowest boiling point. - Stronger forces between molecules in substance A / ora. AO2.2: Apply knowledge of process of fractional distillation - Fractional distillation works as substances \mathbf{A} and \mathbf{B} have different boiling points. - As substance C is insoluble in water. - Because there are differing forces of attraction between the molecules. A03.3a: Analyse information in the table to develop experimental procedure - Heat mixture to boil off substances \mathbf{A} and \mathbf{B} leaving pure \mathbf{C}. - Filter mixture to remove substance \mathbf{C}. - Substance C can be washed with water and dried.
	b	measure its melting point or boiling point (1) if pure melting point or boiling point will be sharp / if impure melting point is lowered / if impure boiling point is elevated (1)	2	
		Total	8	

| Question | | Answer/Indicative content | Marks | Guidance |
| :--- | :--- | :--- | :--- | :---: | :---: |
| 7 | | D | 1 | |
| | | Total | 1 | |
| 8 | | A | 1 | |
| | | Total | 1 | |

Question		Answer/Indicative content	Marks	Guidance
				proportion of the candidates made no attempt to answer the question.
		Total	6	
10		$(2 \times 23)+12+(3 \times 16)(1)$	1	mark is for the working out and not for the final answer allow $23+23+12+16+16+16$ etc. Examiner's Comments This question was about the thermal decomposition of sodium hydrogencarbonate. Most candidates were able to show how to calculate the relative formula mass of sodium hydrogencarbonate.
		Total	1	

Question		Answer/Indicative content	Marks	Guidance	
					explanation of why the drug is impure using both melting point and chromatography data was required to gain credit al Level 3. Of the two test results, the melting point was discussed correctly more frequently than the chromatography. A common misconception was that the drug was pure because the melting point was close to the pure sample.
12			bitumen (1)	Total	$\mathbf{6}$

Question		Answer/Indicative content	Marks	Guidance	
13	a				

Question		Answer/Indicative content	Marks	Guidance	
14			Total	6	
			$\mathrm{C}_{2} \mathrm{H}_{5}(1)$	1	allow any order of symbols
not $\mathrm{C}^{2} \mathrm{H}^{5} / \mathrm{C} 2 \mathrm{H} 5 /$ or use of lower case H					
Examiner's Comments					

understood except by better candidates.

Many candidates gave numerical answers,

calculating molar masses.\end{array}\right]\)| |
| :--- |

Question		Answer/Indicative content		Marks	Guidance
15	a			$\mathrm{C}_{2} \mathrm{H}_{5}$ (1)	

Question		Answer/Indicative content	Marks	Guidance	
16			$\mathrm{C}_{2} \mathrm{H}_{2}$ and $\mathrm{C}_{6} \mathrm{H}_{6}$ (1)	1	both needed if no answer on answer line allow other ways of indicating the correct answer e.g. circling, ticking or underlining Examiner's Comments
17		Total	$\mathrm{C}_{2} \mathrm{H}_{2}$ and $\mathrm{C}_{6} \mathrm{H}_{6}(1)$ A significant proportion of candidates chose the two correct hydrocarbons.		

	uestion	Answer/Indicative content	Marks	Guidance
18		Level 3 (5-6 marks) Comprehensively explains the process of fractional distillation in terms of molecular size, intermolecular forces and boiling points AND Applies knowledge of temperature gradient in fractionating tower to correctly list the fractions in the order they 'exit' the tower. Quality of written communication does not impede communication of the science at this level. Level 2 (3-4 marks) Attempts to explain the process of fractional distillation in terms of molecular size and / or intermolecular forces and boiling points AND Applies knowledge of temperature gradient in fractionating tower to list the fractions in the order they 'exit' the tower. Quality of written communication partly impedes communication of the science at this level. Level 1 (1-2 marks) Describes the process of fractional distillation, but answer may be simplistic and lacking in detail OR lists the fractions in the correct order. Quality of written communication impedes communication of the science at this level. Level 0 (0 marks) Insufficient or irrelevant science. Answer not worthy of credit.	6	This question is targeted at grades up to A^{*}. Indicative scientific points at levels 2 and 3 may include: - smaller molecules, eg LPG / petrol / paraffin, have weaker or fewer intermolecular forces / ora - smaller molecules have lower boiling points with weaker or fewer intermolecular forces / ora - during boiling the weak intermolecular forces break but covalent bonds within the molecule do not. Indicative scientific points at Level 1 may include: - crude oil is heated - fractionating column has temperature gradient (cold at top and hot at bottom) - order of fractions, from top, is: LPG petrol paraffin heating oil fuel oils bitumen Use the L1, L2, L3 annotations in scoris; do not use ticks. Examiner's Comments This 6 mark question was targeted at all grades up to, and including, grade A^{*} and discriminated well. The question required candidates to analyse the data in order to list the fractions in the positions that they 'exit' the fractionating column and then to explain how fractional distillation separates crude oil into fractions. At level 3 (5-6 marks) all aspects of the question needed to be addressed and candidates were required to explain the process of fractional

Question		Answer/Indicative content	Marks	Guidance	
					distillation in terms of molecular size, intermolecular forces and boiling points. Some candidates continue to confuse fractional distillation and cracking.
				6	

