A sample of bromine was analysed in a time of flight (TOF) mass spectrometer and found to contain two isotopes, ⁷⁹Br and ⁸¹Br

After electron impact ionisation, all of the ions were accelerated to the same kinetic energy (KE) and then travelled through a flight tube that was 0.950 m long.

(a) The ⁷⁹Br⁺ ions took 6.69×10^{-4} s to travel through the flight tube.

Calculate the mass, in kg, of one ion of ⁷⁹Br⁺ Calculate the time taken for the ⁸¹Br⁺ ions to travel through the same flight tube.

The Avogadro constant, $L = 6.022 \times 10^{23} \text{ mol}^{-1}$

a.

1.

$$KE = \frac{1}{2}mv^2$$
 where $m = \text{mass}$ (kg) and $v = \text{speed}$ (m s⁻¹)

$$v = \frac{d}{t}$$
 where d = distance (m) and t = time (s)

Mass of one ion of ⁷⁹Br⁺ _____ kg

Time taken by ⁸¹Br⁺ ions ______s

(5)

(b) Explain how ions are detected and relative abundance is measured in a TOF mass spectrometer.

(2) (Total 7 marks)

This question is about s-block metals.

- (a) Give the full electron configuration for the calcium ion, Ca²⁺
- (b) Explain why the second ionisation energy of calcium is lower than the second ionisation energy of potassium.

(c) Identify the s-block metal that has the highest first ionisation energy.

(1)

(2)

(1)

(d) Give the formula of the hydroxide of the element in Group 2, from Mg to Ba, that is least soluble in water.

(1)

(e) A student added 6 cm³ of 0.25 mol dm⁻³ barium chloride solution to 8 cm³ of 0.15 mol dm⁻³ sodium sulfate solution.
The student filtered off the precipitate and collected the filtrate.

Give an ionic equation for the formation of the precipitate. Show by calculation which reagent is in excess. Calculate the total volume of the other reagent which should be used by the student so that the filtrate contains only one solute.

Ionic equat	on	
ionio oquu		

Reagent in excess _____

Total volume of other reagent _____

(f) A sample of strontium has a relative atomic mass of 87.7 and consists of three isotopes, ⁸⁶Sr, ⁸⁸Sr and ⁸⁸Sr

In this sample, the ratio of abundances of the isotopes ⁸⁶Sr :⁸⁸Sr is 1:1

State why the isotopes of strontium have identical chemical properties. Calculate the percentage abundance of the ⁸⁸Sr isotope in this sample.

Why isotopes of strontium have identical chemical properties

Percentage abundance of ⁸⁸Sr _____ %

(4)

(1)

(g) A time of flight (TOF) mass spectrum was obtained for a sample of barium that contains the isotopes ¹³⁶Ba, ¹³⁷Ba and ¹³⁸Ba

The sample of barium was ionised by electron impact.

Identify the ion with the longest time of flight.

(h) A $^{137}Ba^+$ ion travels through the flight tube of a TOF mass spectrometer with a kinetic energy of 3.65 x 10^{-16} J

This ion takes 2.71 \times 10⁻⁵ s to reach the detector.

$$KE = \frac{1}{2}mv^2$$
 where $m = mass$ (kg) and $v = speed$ (m s⁻¹)

The Avogadro constant, $L = 6.022 \times 10^{23} \text{ mol}^{-1}$

Calculate the length of the flight tube in metres.

Give your answer to the appropriate number of significant figures.

Length of flight tube _____ m

(5) (Total 18 marks)

3. Magnesium exists as three isotopes: ²⁴Mg, ²⁵Mg and ²⁶Mg

(a) In terms of sub-atomic particles, state the difference between the three isotopes of magnesium.

(1)

(b) State how, if at all, the chemical properties of these isotopes differ.

Give a reason for your answer.				
Chemical properties				
	-			
Reason				

(c) ²⁵Mg atoms make up 10.0% by mass in a sample of magnesium.

Magnesium has $A_r = 24.3$

Use this information to deduce the percentages of the other two magnesium isotopes present in the sample.

 24 Mg percentage = _____ % 26 Mg percentage = _____ %

(2)

(d) In a TOF mass spectrometer, ions are accelerated to the same kinetic energy (KE).

$$KE = \frac{1}{2}mv^{2} \text{ where } m = \text{mass (kg) and } v = \text{velocity (m s}^{-1})$$
$$v = \frac{d}{t} \text{ where } d = \text{distance (m) and } t = \text{time (s)}$$

In a TOF mass spectrometer, each ${}^{25}Mg^+$ ion is accelerated to a kinetic energy of 4.52×10^{-16} J and the time of flight is 1.44×10^{-5} s. Calculate the distance travelled, in metres, in the TOF drift region. (The Avogadro constant L = 6.022×10^{23} mol⁻¹)

Distance = _____ m

(4) (Total 11 marks)

Mark schemes

(a)

1.

Then either follow **method 1** (or **method 2** below) Do not mix and match methods

Method 1

$$V_{79} = \frac{d}{t} = 0.950 / 6.69 \times 10^{-4}$$

= 1420 ms⁻¹

In method 1, M2 can be awarded in M3

 $KE = \frac{1}{2} mv^2$

$$= \frac{1}{2} \times 1.312 \times 10^{-25} \times (1420)^2$$

= 1.32 × 10⁻¹⁹ J

Mark consequential to their velocity and mass. Allow mass of 79 etc.

$$V_{81} = \sqrt{\left(\frac{2KE}{m}\right)}$$

$$= \sqrt{1.963 \times 10^6}$$

$$= 1.40 \times 10^3 \, \text{ms}^{-1}$$

(allow 1.398 × 10³ - 1.402 × 10³) Mark consequential to their velocity and mass. Allow mass of 81 etc.

$$t = \frac{d}{v} = \frac{0.950}{v_{81}}$$

 $= 6.80 \times 10^{-4} s$

Mark consequential to their M4 Accept 6.77 – 6.80 × 10^{-4} s

Method 2

$$m_1(d/t_1)^2 = m_2 (d/t_1)^2$$

or
 $m_1 / t_1^2 = m_2 / t_2^2$

1

1

1

1

1

1

	$t_2^2 = Or$	$t_1^2 (m_2/m_1)$		
	$t_2^2 =$	$(6.69 \times 10^{-4})2 \times (81/79)$	1	
	$t_2^2 = 4.59 \times 10^{-7}$			
		Mark consequential to their M3	1	
	$t = 6.77 \times 10^{-4} s$			
		Mark consequential to their M4		
		Accept 6.77 – 6.80 × 10^{-4} s	_	
			1	
(b)	ion h	nits the detector / negative plate and gains an electron		
		Not positive plate	1	
	(rela	tive) abundance is proportional to (the size of) the curren <i>t</i>		
			1	[7]
(a)	1s² 2	2s ² 2p ⁶ 3s ² 3p ⁶ (4s ⁰)	1	
(b)	M1	In Ca ⁽⁺⁾ (outer) electron(s) is further from nucleus		
		Or Ca ⁽⁺⁾ loses electron from a higher (energy) orbital		
		Or Ca ⁽⁺⁾ loses electron from a 4(s) orbital or 4th energy level or 4th energy shell and K ⁽⁺⁾ loses electron from a 3(p) orbital or 3rd energy level or 3rd energy shell <i>Must be comparative</i>	1	
		Allow converse arguments	1	
	Mo	Mara abialdian (in Cat)	-	
	M2	More shielding (in Ca ⁺)	1	
(c)				
			1	
(d)	Mg(0	OH) ₂	1	

2.

(e) $Ba^{2+} + SO_4^{2-} \rightarrow BaSO_4$ Ignore state symbols

1 n BaCl₂ (6/1000 × 0.25) = 1.5×10^{-3} and n Na₂SO₄ = (8/1000 × 0.15) = 1.2×10^{-3} and BaCl₂ /barium chloride in excess Working required or 3×10^{-4} of BaCl₂ 1 <u>10 cm³</u> (of 0.15 mol dm⁻³ sodium sulfate) or <u>0.01dm</u>³ 1 Same electronic configuration / same number of electrons (in outer shell) / all have 37 (f) M1 electrons (1) Ignore protons and neutrons unless incorrect numbers Not just electrons determine chemical properties 1 $\frac{86x + 87x + 88(100-2x)}{100} = 87.7 = 87.7$ M2 Alternative M2: 86 + 87 + 88y = 87.7 1 + 1 + y1 **M3** x = 10% (or x = 0.1) M3y = 81 M4 (% abundance of 88 isotope is 100 - 2x10) = 80(.0)% M4 % of 88 isotope is 100 - 10y = 80(.0) % Allow other alternative methods 1 ¹³⁸Ba⁺ (g) 1

(h)	M1	mass = $\frac{137 \times 10^3}{6.022 \times 10^{23}}$ = 2.275 × 10 ⁻²⁵ (kg) Calculation of m in kg If not converted to kg, max 4 If not divided by L lose M1 and M5, max 3	1
	M2	$v^{2} = \frac{2KE}{m} = \frac{2 \times 3.65 \times 10^{-16}}{2.275 \times 10^{-25}} = 3.2088 \times 10^{9}$ For re-arrangement	1
	М3	$v = \sqrt{2KE/m}$ (v = 5.6646 × 10 ⁴) For expression with square root	1
	Μ4	v = d/t or $d = vt$ or with numbers	1
	М5	d = (5.6646 × 10 ⁴ × 2.71 × 10 ⁻⁵) = 1.53 - 1.54 (m) <i>M5 must be to 3sf</i> <i>If not converted to kg, answer</i> = 0.0485-0.0486 (3sf). This scores 4 <i>marks</i>	1
	Alte	rnative method	1
	M1	$m = \frac{137 \times 10^{-3}}{6.022 \times 10^{-23}} = 2.275 \times 10^{-25}$ M1 Calculation of m in kg	1
	М2	v = d/t M2, M3 and M4 are for algebraic expressions or correct expressions with numbers	1
	М3	$d^2 = \frac{KE \times 2t^2}{m}$	1
	M4	$d = \sqrt{\frac{KE \times 2t^2}{m}} (= \sqrt{(3.65 \times 10^{-16} \times 2 \times (2.71 \times 10^{-5})^2 / 2.275 \times 10^{-25})})$	1
	М5	d = 1.53 – 1.54 (m) <i>M5 must be to 3sf</i>	1

[18]

3.	(a)	²⁴ Mg has 12n; ²⁵ Mg has 13n; ²⁶ Mg has 14n	
		OR They have different numbers of neutrons	1
	(b)	No difference in chemical properties	1
		Because all have the same electronic structure (configuration)	
		OR they have the same number of outer electrons	1
	(c)	If fraction with mass $24 = x$	
		Fraction with mass $26 = 0.900 - x$	
		Fraction with mass 25 = 0.100	1
		$A_{\rm f} = 24x + (25 \times 0.100) + 26(0.900 - x)$	1
		24.3 = 24x + 2.50 + 23.4 - 26x	
		2x = 1.60	
		x = 0.800 i.e. percentage 24 Mg = 80.0(%) (80.0% 3sf)	1
		26 Mg = 0.900 - 0.800 = 0.100 ie percentage 26 Mg = 10.0(%)	1
	(d)	$m = \frac{25/1000}{6.022 \times 10^{23}}$	1
		$v^2 = 2ke/m \text{ or } v^2 = \frac{2 \times (4.52 \times 10^{-16}) \times (6.022 \times 10^{23})}{25/1000}$	1
		$V = \sqrt{2.18 \times 10^{10}} = 1.48 \times 10^{5} \text{ (ms}^{-1}\text{)}$	_
			1
		$D = vt = 1.48 \times 10^5 \times 1.44 \times 10^{-5}$	
		D = 2.13 (m)	1

[11]