

AS Chemistry (7404/1)

Paper 1: Inorganic and Physical Chemistry

Specimen 2015 v0.5

Session

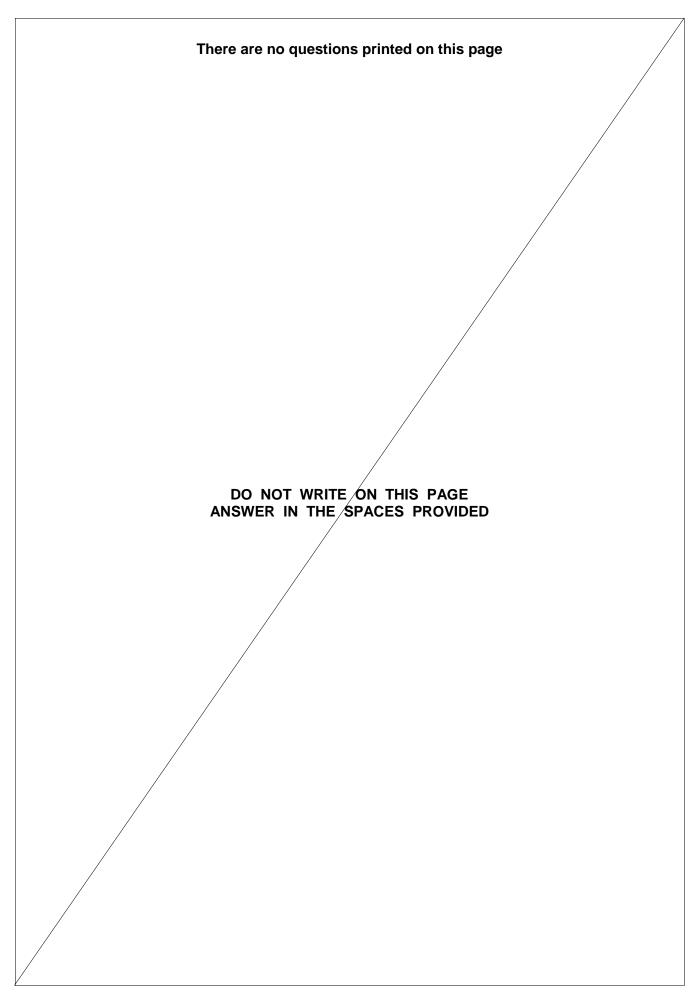
1 hour 30 minutes

Materials

For this paper you must have:

- the Data Sheet, provided as an insert
- a ruler
- a calculator.

Instructions


- Answer all questions.
- Show all your working.

Information

The maximum mark for this paper is 80.

Please write clearly, in block capi	tals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	

Barcode vo.5 **7404/1**

	Section A
	Answer all questions in this section.
1 0 1 . 1	This question is about the elements in Group 2 and their compounds. Use the Periodic Table to deduce the full electron configuration of calcium. [1 mark]
0 1 . 2	Write an ionic equation, with state symbols, to show the reaction of calcium with an excess of water. [1 mark]
0 1 . 3	State the role of water in the reaction with calcium. [1 mark]
0 1 . 4	Write an equation to show the process that occurs when the first ionisation energy of calcium is measured. [1 mark]
0 1 . 5	State and explain the trend in the first ionisation energies of the elements in Group 2 from magnesium to barium. [3 marks]
	Explanation

		Table	1		
		Mass number of isotope	32	33	
		Relative abundance / %	91.0	1.8	
		the third isotope. answer to the appropriate n	umber of sig	nificant figu	res. [4 m
2 . 2	Describe h	now ions are formed in a time	Mass nu e of flight (TC		pectrometer.

0 2 . 3	A TOF mass spectrometer can be used to determine the relative molecular mass of molecular substances.
	Explain why it is necessary to ionise molecules when measuring their mass in a TOF mass spectrometer.
	[2 marks]
	Turn over for the next question

	equation, including si andard enthalpy of for			eaction wi	th enthalpy change equal
0 3 . 2 Explain	why CF₄ has a bond a	ingle of 10	9.5°.		[2 marks]
0 3 . 3 Table 2	gives some values of	standard e	enthalpies o	of formation	\cap ($\Delta_{\mathrm{f}}\mathcal{H}^{\Theta}$).
	Substance	F ₂ (g)	CF ₄ (g)	HF(g)	
	Δ _f H ^e / kJ mol ⁻¹	0	-680	-269	

The enthalpy change for the following reaction is $-2889 \text{ kJ mol}^{-1}$.

$$C_2H_6(g) + 7F_2(g) \longrightarrow 2CF_4(g) + 6HF(g)$$

Use this value and the standard enthalpies of formation in **Table 2** to calculate the standard enthalpy of formation of $C_2H_6(g)$.

[3 marks]

Standard enthalpy of formation of $C_2H_6(g) =$ _____kJ mol⁻¹

0 3 · 4 Methane reacts violently with fluorine according to the following equation.

$$CH_4(g) + 4F_2(g) \longrightarrow CF_4(g) + 4HF(g) \Delta H = -1904 \text{ kJ mol}^{-1}$$

Some mean bond enthalpies are given in Table 3.

Table 3

Bond	C–H	C-F	H–F
Mean bond enthalpy / kJ mol ⁻¹	412	484	562

A student suggested that one reason for the high reactivity of fluorine is a weak F–F bond .

Is the student correct? Justify your answer with a calculation using these data.

[4 marks]

Turn over for the next question

4							(aq) re	act to f	orm an orange	solution c	of Z (aq)
	accordi	ng to	the to	ollowir	ıg equ	uation.					
		X(aq) +	2 Y (a	ad) <u></u>	<u> </u>	(aq)	$\Delta H = \frac{1}{2}$	–20 kJ mol ^{–1}		
0 4 . 1	0.50 mo After 30 The am	of \seco	((aq) a conds, for Z (a	and sh there aq) at o	nook t was r equilil	the mix no furth orium v	cture. ner cha was 0.	inge in 20 mol.		ution conta	aining
0 4 . [1]	Deduce	uie	amoui	1115 01	∧ (aq)	anu i	(ay) a	t equilit	mum.		[2 marks]
0 4 . 2		grid k	oelow,	draw	a gra		show h	ow the	ount of Y (aq) : amount of Z (a		

0 4 . 3	The student prepared another equilibrium mixture in which the equilibrium concentrations of X and Z were: $\mathbf{X}(aq) = 0.40 \text{ mol dm}^{-3} \text{ and } \mathbf{Z}(aq) = 0.35 \text{ mol dm}^{-3}.$ For this reaction, the equilibrium constant $K_c = 2.9 \text{ mol}^{-2} \text{ dm}^6$. Calculate a value for the concentration of Y at equilibrium. Give your answer to the appropriate number of significant figures.	[3 marks]
	[Y] =	mol dm ^{−3}
	<u> </u>	
0 4 . 4	The student added a few drops of $Y(aq)$ to the equilibrium mixture of $X(aq)$, $Y(aq)$ in Question 4.3.	(aq) and
	Suggest how the colour of the mixture changed. Give a reason for your answ	/er. [3 marks]
	Colour change	
	Reason	
0 4 . 5	The student warmed the equilibrium mixture from Question 4.3 . Predict the colour change, if any, when the equilibrium mixture was warmed.	
		[1 mark]

5	This question is about the chemical properties of chlorine, sodium chloride and sodium bromide.
0 5 . 1	Sodium bromide reacts with concentrated sulfuric acid in a different way from sodium chloride.
	Write an equation for this reaction of sodium bromide and explain why bromide ions
	react differently from chloride ions. [3 marks]
	o markoj
	Equation
	Explanation
	- Explanation
	·
0 5 . 2	A colourless solution contains a mixture of sodium chloride and sodium bromide.
	Using aqueous silver nitrate and any other reagents of your choice, develop a procedure to prepare a pure sample of silver bromide from this mixture.
	Explain each step in the procedure and illustrate your explanations with equations,
	where appropriate. [6 marks]
	•
	-

0 5 . 3	Write an ionic equation for the reaction between chlorine and cold dilute sodium hydroxide solution.
	Give the oxidation state of chlorine in each of the chlorine-containing ions formed. [2 marks]
	[2 marks]
	Turn over for the next question

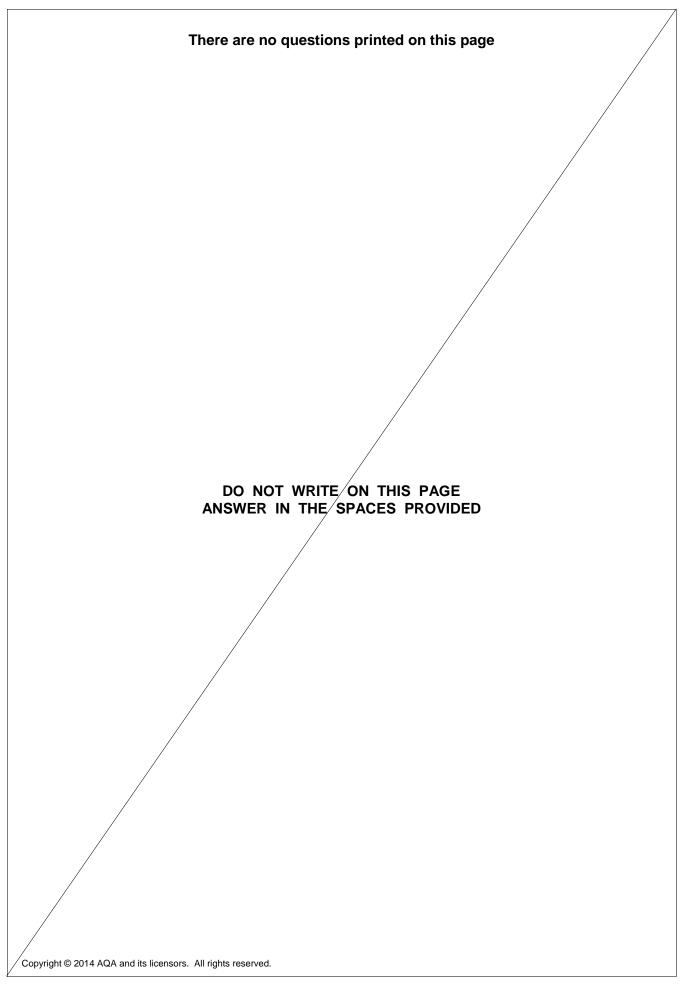
6	This question is about reactions of calcium compounds.
0 6 . 1	A pure solid is thought to be calcium hydroxide. The solid can be identified from its relative formula mass.
	The relative formula mass can be determined experimentally by reacting a measured mass of the pure solid with an excess of hydrochloric acid. The equation for this reaction is
	$Ca(OH)_2 + 2HCI \longrightarrow CaCl_2 + 2H_2O$
	The unreacted acid can then be determined by titration with a standard sodium hydroxide solution.
	You are provided with 50.0 cm ³ of 0.200 mol dm ⁻³ hydrochloric acid. Outline, giving brief practical details, how you would conduct an experiment to calculate accurately the relative formula mass of the solid using this method. [8 marks]
	· · ·

0 6 . 2	A 3.56 g sample of calcium chloride was dissolved in water and reacted with an excess of sulfuric acid to form a precipitate of calcium sulfate.	
	The percentage yield of calcium sulfate was 83.4%.	
	Calculate the mass of calcium sulfate formed. Give your answer to an appropriate number of significant figures. [3 marks]	
	Mana of coloium sulfate forms of	
	Mass of calcium sulfate formed = ç	
	Turn over for the next question	

7	A sample of pure $Mg(NO_3)_2$ was decomposed by heating as shown in the eq below.	uation
	$2Mg(NO3)2(s) \longrightarrow 2MgO(s) + 4NO2(g) + O2(g)$	
0 7 . 1	A 3.74 \times 10 ⁻² g sample of Mg(NO ₃) ₂ was completely decomposed by heating	ı .
	Calculate the total volume, in cm ³ , of gas produced at 60.0 °C and 100 kPa. Give your answer to the appropriate number of significant figures. The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$.	[5 marks]
	Total volume of gas =	cm³
0 7 . 2	The mass of MgO obtained in this experiment is slightly less than that expect the mass of Mg(NO ₃) ₂ used. Suggest one practical reason for this.	ted from [1 mark]

				Secti	ion B			
			Answer a	all questic	ons in thi	s section.		
Only one	answer	per ques	tion is allowe	d.				
For each	answer	complete	ly fill in the ci	rcle along	gside the	appropriate	answer.	
CORRECT M	METHOD	WRO	ING METHODS	Ø ● €	\geqslant ϕ			
If you wa	int to cha	ange your	answer you	must cros	ss out yo	ur original ar	nswer as sł	nown.
If you wis		ırn to an a	answer previo	ously cros	ssed out,	ring the ans	wer you no	w wish to select
as snow	" 💆							
8 0	Whic	ch of thes	e atoms has	he larges	st atomic	radius?		[1 mark]
	Α	Ar	0					
	В	CI	0					
	С	Mg	\bigcirc					
	D	Na	0					
0 9	Whic	ch of thes	e species is t	he best re	educing a	agent?		[1 mark]
	Α	Cl_2						[· · · · · · · · · · · · · · · · · · ·
	В	CI ⁻						
	С	I_2	\bigcirc					
	D	Γ	\bigcirc					

Turn over ▶ Barcode Typesetter code


1 0		of these pieces ourement shown?	of apparatus has the lowest perc	· ·	
				[1 mark	[]
	Α	Volume of 25 cm with an uncertain	n ³ measured with a burette nty of ±0.1 cm ³ .		
	В		n ³ measured with a measuring uncertainty of ±0.5 cm ³ .	0	
	С	Mass of 0.150 g with an uncertain	measured with a balance nty of ±0.001 g.	0	
	D		ange of 23.2 °C measured eter with an uncertainty of ±0.1 °	C.	
1 1	acid.	The student is ask	th a 5.00 cm 3 sample of 1.00 x ked to devise a method to preparation \times 10 $^{-4}$ mol dm $^{-3}$ by diluting	re a hydrochloric acid solution	
	Which	of these is the co	orrect volume of water that shoul	ld be added? [1 mark	[]
	Α	45.0 cm ³	0		
	В	95.0 cm ³			
	С	100 cm ³			
	D	995 cm ³			
1 2	Which	of these species	has a trigonal planar structure?	[1 mark	[]
	Α	PH ₃	0		
	В	BCI ₃	0		
	С	H_3O^+	0		
	D	CH ₃	0		

Barcode

1 3	Use your understanding of intermolecular forces to predict which of these compounds has the highest boiling point.				
	nas un	e riigilest boii		1 mark]	
	A	HF			
	В	HCI			
	С	HBr			
	D	НІ			
1 4			is formed between N and B when a molecule of $\mathrm{NH_3}$ reacts	with a	
	moleci	ule of BF ₃ ?	ו	1 mark]	
	Α	Ionic.			
	В	Covalent.			
	С	Co-ordinate	o. O		
	D	Van der Wa	nals		
1 5	Which	of these ator	ns has the highest electronegativity?	1 mark]	
	В	Mg			
	С	CI			
	D	Ar			
1 6			ms has the smallest number of neutrons?	1 mark]	
	Α	³ H			
	В	⁴ He			
	С	⁵He			
	D	⁴ Li			

1 7	Whic	h of these subst	ances does not show hydrogen bonding?	[1 mark]
	Α	HF		
	В	NH ₃		
	С	CH₃COOH		
	D	CHF ₃		
1 8	What	is the formula c	of calcium nitrate(V)?	[1 mark]
	Α	CaNO ₃		
	В	Ca(NO ₃) ₂	0	
	С	Ca ₂ NO ₂		
	D	Ca(NO ₂) ₂		
1 9	Whic	h of these eleme	ents has the highest second ionisation energy?	[1 mark]
	Α	Na 🔘		
	В	Mg		
	С	Ne 🔘		
	D	Ar 🔘		

2 0	Which shown		shows chlorine in	its correct oxida	ation states i	in the compounds
						[1 mark]
		HCI	KCIO ₃	HCIO		
	Α	– 1	+3	+1	0	
	В	+1	- 5	– 1	0	
	С	– 1	+5	+1	0	
	D	+1	+5	– 1	0	
2 1	Which with co	substance is n oncentrated sulf	ot produced in a re uric acid?	edox reaction wl	nen solid sod	dium iodide reacts [1 mark]
	A	H ₂ S				[1 mark]
	В	Н				
	С	SO ₂				
	D					
2 2	Which	of the following	contains the mos	t chloride ions?		[1 mark]
	A	10 cm ³ of 3.30	$\times 10^{-2} \text{ mol dm}^{-3} \text{ a}$	aluminium chlori	de solution	
	В	20 cm ³ of 5.00	\times 10 ⁻² mol dm ⁻³ c	calcium chloride	solution	0
	С	30 cm ³ of 3.30	\times 10 ⁻² mol dm ⁻³ h	nydrochloric acid	i	0
	D	40 cm ³ of 2.50	× 10 ⁻² mol dm ⁻³ s	odium chloride	solution	0
	END OF QUESTIONS					

