AS

Chemistry

Paper 1 (7404/1): Inorganic and Physical Chemistry
Mark scheme

7404

Specimen paper

Version 0.6

Section A

Question	Marking guidance	Mark	AO	Comments
01.1	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}$	1	AO1a	Allow correct numbers that are not superscripted
01.2	$\mathrm{Ca}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$	1	AO2d	State symbols essential
01.3	Oxidising agent	1	AO2c	
01.4	$\mathrm{Ca}(\mathrm{g}) \longrightarrow \mathrm{Ca}^{+}(\mathrm{g})+\mathrm{e}^{-}$	1	AO1a	State symbols essential Allow 'e' without the negative sign
01.5	Decrease lons get bigger / more (energy) shells Weaker attraction of ion to lost electron	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	AO1a AO1a AO1a	If answer to 'trend' is not 'decrease', then chemical error $=0 / 3$ Allow atoms instead of ions

Question	Marking guidance	Mark	AO	Comments
02.1	$\begin{aligned} & \text { Abundance of third isotope }=100-91.0-1.8=7.2 \% \\ & \frac{(32 \times 91)+(33 \times 1.8)+(y \times 7.2)}{100}=32.16 \\ & 7.2 y=32.16 \times 100-32 \times 91-33 \times 1.8=244.6 \\ & y=244.6 / 7.2=33.97 \\ & y=34 \end{aligned}$	1 1 1 1	AO1b AO2f AO2f AO1b	Answer must be rounded to the nearest integer
02.2	(for electrospray ionisation) A high voltage is applied to a sample in a polar solvent the sample molecule, M , gains a proton forming MH^{+} OR (for electron impact ionisation) the sample is bombarded by high energy electrons the sample molecule loses an electron forming M^{+}	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	AO1b AO1b AO1b AO1b	

Ions, not molecules, will interact with and be accelerated by an electric field Only ions will create a current when hitting the detector	1	AO2e

Question	Marking guidance	Mark	AO	Comments
03.1	$\mathrm{C}(\mathrm{s})+2 \mathrm{~F}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CF}_{4}(\mathrm{~g})$	1	AO1a	State symbols essential
03.2	Around carbon there are 4 bonding pairs of electrons (and no lone pairs) Therefore, these repel equally and spread as far apart as possible	1 1	AO1a AO1a	
03.3	$\Delta H=\Sigma \Delta_{f} H$ products $-\Sigma \Delta_{f} H$ reactants or a correct cycle $\begin{aligned} \text { Hence } & =(2 \times-680)+(6 \times-269)-(x)=-2889 \\ & x=2889-1360-1614=-85\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	AO1b AO1b AO1b	Score 1 mark only for $+85\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
03.4	$\begin{aligned} & \text { Bonds broken }=4(\mathrm{C}-\mathrm{H})+4(\mathrm{~F}-\mathrm{F})=4 \times 412+4 \times \mathrm{F}-\mathrm{F} \\ & \text { Bonds formed }=4(\mathrm{C}-\mathrm{F})+4(\mathrm{H}-\mathrm{F})=4 \times 484+4 \times 562 \\ & -1904=[4 \times 412+4(\mathrm{~F}-\mathrm{F})]-[4 \times 484+4 \times 562] \\ & 4(\mathrm{~F}-\mathrm{F})=-1904-4 \times 412+[4 \times 484+4 \times 562]=632 \\ & \mathrm{~F}-\mathrm{F}=632 / 4=158\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$ The student is correct because the $\mathrm{F}-\mathrm{F}$ bond energy is much less than the $\mathrm{C}-\mathrm{H}$ or other covalent bonds, therefore the $\mathrm{F}-\mathrm{F}$ bond is weak / easily broken	1 1 1 1	AO3 1a AO3 1a AO3 1a AO3 1b	Both required Relevant comment comparing to other bonds (Low activation energy needed to break the F-F bond)

Question	Marking guidance	Mark	AO	Comments
04.1	amount of $X=0.50-0.20=0.30(\mathrm{~mol})$ amount of $Y=0.50-2 \times 0.20=0.10(\mathrm{~mol})$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	AO2h AO2h	
04.2	Axes labelled with values, units and scales that use over half of each axis Curve starts at origin Then flattens at 30 seconds at 0.20 mol	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	AO2h AO2h AO2h	All three of values, units and scales are required for the mark
04.3	$\begin{aligned} & \text { Expression }=K_{\mathrm{c}}=\frac{[\mathrm{Z}]}{[\mathrm{X}][\mathrm{Y}]^{2}} \\ & {[\mathrm{Y}]^{2}=\frac{[\mathrm{Z}]}{[\mathrm{X}] K_{\mathrm{c}}}} \\ & {[\mathrm{Y}]=(0.35 / 0.40 \times 2.9)^{0.5}=0.5493=0.55\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)} \end{aligned}$	1 1 1	AO1a AO2b AO1b	Answer must be to 2 significant figures
04.4	Darkened / went more orange The equilibrium moved to the right To oppose the increased concentration of Y	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{AO} 2 \mathrm{~g} \\ & \mathrm{AO} 2 \mathrm{~g} \\ & \mathrm{AO} 2 \mathrm{~g} \end{aligned}$	
04.5	The orange colour would fade	1	AO3 1a	

Question	Marking guidance	Mark	AO	Comments
05.1	$2 \mathrm{NaBr}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{Br}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ Br^{-}ions are bigger than Cl^{-}ions Therefore Br^{-}ions more easily oxidised / lose an electron more easily (than Cl^{-}ions)	1 1	A01a AO2c AO2c	Allow ionic equation $2 \mathrm{Br}^{-}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Br}_{2}+\mathrm{SO}_{4}^{2-}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

05.2	This question is marked using levels of response. Refer to the Mark Scheme Instructions for Examiners for guidance on how to mark this question.		6	$\begin{gathered} 2 \mathrm{AO} 1 \mathrm{a} \\ 4 \text { AO3 } 2 \mathrm{~b} \end{gathered}$	Indicative chemistry content Stage 1: formation of precipitates - Add silver nitrate - to form precipitates of AgCl and AgBr - $\mathrm{AgNO}_{3}+\mathrm{NaCl} \rightarrow \mathrm{AgCl}+\mathrm{NaNO}_{3}$ - $\mathrm{AgNO}_{3}+\mathrm{NaBr} \rightarrow \mathrm{AgBr}+\mathrm{NaNO}_{3}$ Stage 2: selective dissolving of AgCl - Add excess of dilute ammonia to the mixture of precipitates - the silver chloride precipitate dissolves - $\mathrm{AgCl}+2 \mathrm{NH}_{3} \rightarrow \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}+\mathrm{Cl}^{-}$ Stage 3: separation and purification of AgBr - Filter off the remaining silver bromide precipitate - Wash to remove soluble compounds - Dry to remove water
	Level 3 5-6 marks	All stages are covered and the explanation of each stage is generally correct and virtually complete. Stages 1 and 2 are supported by correct equations. Answer communicates the whole process coherently and shows a logical progression from stage 1 to stage 2 and then stage 3. The steps in stage 3 are in a logical order.			
	Level 2 3-4 marks	All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete. Answer is mainly coherent and shows a progression through the stages. Some steps in each stage may be out of order and incomplete.			
	Level 1 1-2 marks	Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually complete. Answer includes some isolated statements, but these are not presented in a logical order or show confused reasoning.			
	Level 0 0 marks	Insufficient correct chemistry to warrant a mark.			

05.3	$\mathrm{Cl}_{2}+2 \mathrm{HO}^{-} \longrightarrow \mathrm{OCl}^{-}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}$		
OCl^{-}is +1			
Cl^{-}is -1		$\quad 1$	
:---:	:---:		

06.2	Moles of calcium chloride $=3.56 / 111.1=3.204 \times 10^{-2}$	1	AO2h	
	Moles of calcium sulfate $=3.204 \times 10^{-2} \times 83.4 / 100=2.672 \times 10^{-2}$	1	AO2h	
	Mass of calcium sulfate $=2.672 \times 10^{-2} \times 136.2=3.6398=3.64(\mathrm{~g})$	1	AO2h	Answer must be to 3 significant figures

Question	Marking guidance	Mark	AO	Comments
07.1	Stage 1 Mr_{r} for $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}=148.3$ Moles of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}=\frac{3.74 \times 10^{-2}}{148.3}=2.522 \times 10^{-4} \mathrm{~mol}$ Stage 2 Total moles of gas produced $=5 / 2 \times$ moles of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ $=5 / 2 \times 2.522 \times 10^{-4}=6.305 \times 10^{-4}$ Stage 3 $P V=n R T$ so volume of gas $V=n R T / P$ $\begin{aligned} & V=\frac{n R T}{P}=\frac{6.305 \times 10^{-4} \times 8.31 \times 333}{1.00 \times 10^{5}}=1.745 \times 10^{-5} \mathrm{~m}^{3} \\ & V=1.745 \times 10^{-5} \times 1 \times 10^{6}=17.45 \mathrm{~cm}^{3}=17.5\left(\mathrm{~cm}^{3}\right) \end{aligned}$	1 1 1 1	AO2h AO2h AO2h AO2h AO1b	Extended response calculation If ratio in stage 2 is incorrect, maximum marks for stage 3 is 2 Answer must be to 3 significant figures (answer could be $17.4 \mathrm{~cm}^{3}$ dependent on intermediate values)
07.2	Some of the solid is lost in weighing product / solid is blown away with the gas	1	AO3 1b	

Section B

In this section, each correct answer is awarded 1 mark.

Question	Key	AO
8	D	AO1a
9	D	AO1b
10	A	AO3 1b
11	B	AO3 2a
12	B	AO2a
13	A	AO2a
14	C	AO1a
15	C	AO1a
16	D	AO2b
17	AO2a	
18	A	AO1a
19	C	AO2b
20	B	AO1b
21	B	AO2b
22		

