Oxford A Level Sciences

AQA Chemistry

17 Thermodynamics Practice questions

Question number	Answer	Marks	Guidance
1 (a) (i)	(At 0 K) particles are stationary / not moving / not vibrating	1	Allow have zero energy. Ignore atoms / ions.
	No disorder / perfect order / maximum order	1	Mark independently.
1 (a) (ii)	As <i>T</i> increases, particles start to move / vibrate	1	Ignore atoms / ions. Allow have more energy. If change in state, CE = 0
	Disorder / randomness increases / order decreases	1	
1 (a) (iii)	Mark <u>on temperature axis</u> vertically below second 'step'	1	Must be marked as a line, an 'x', <i>Tb</i> or 'boiling point' <u>on the</u> <u>temperature axis</u> .
1 (a) (iv)	L ₂ corresponds to boiling / evaporating / condensing / I \rightarrow g / g \rightarrow I And L ₁ corresponds to melting / freezing /	1	There must be a clear link between L_1 , L_2 and the change in state.
	Bigger change in <u>disorder</u> for L_2 / boiling compared with L_1 / melting	1	M2 answer must be in terms of changes in state and not absolute states, for example, must refer to change from liquid to gas not just gas. Ignore reference to atoms even if incorrect.
1 (b) (i)	$\Delta G = \Delta H - T \Delta S$	1	
	$\Delta H= c$ and $(-)\Delta S = m / \Delta H$ and ΔS are constants (approx)	1	Allow ΔH is the intercept, and $(-)\Delta S$ is the slope / gradient. Can only score M2 if M1 is correct.
1 (b) (ii)	Because the entropy change / ΔS is positive / $T\Delta S$ gets bigger	1	Allow $-T \Delta S$ gets more negative.
1 (b) (iii)	<u>Not</u> feasible / <u>un</u> feasible / <u>not</u> spontaneous	1	
1 (c) (i)	+ 44.5 J K ⁻¹ mol ⁻¹	1	Allow answer without units but if units given they must be correct (including mol^{-1})

Oxford A Level Sciences

AQA Chemistry

17 Thermodynamics Practice questions

1 (c) (ii)	At 5440 $\Delta H = T \Delta S$	1	
	= 5440 × 44.5 = 242 080 (OR using given value = 5440 × 98 = 533 120)	1	Mark is for answer to (c)(i) × 5440
	$\Delta H = 242 \text{ kJ mol}^{-1}$ (OR using given value $\Delta H = 533 \text{ kJ mol}^{-1}$)	1	Mark is for correct answer to M2 with correct units $(J \text{ mol}^{-1} \text{ or } kJ \text{ mol}^{-1})$ linked to answer.
			If answer consequentially correct based on (c)(i) except for incorrect sign (e.g., -242), max 1/3 provided units are correct.
2 (a)	$\Delta G = \Delta H - T \Delta S$		Ignore 🕂
2 (b)	0.098 or 98	1	Allow 0.097 to 0.099/97 to 99 Allow 0.1 only if 0.098 shown in working
	kJ K ⁻¹ mol ⁻¹ J K ⁻¹ mol ⁻¹	1	Allow in any order Unless slope is approx. 100(90- 110) accept only kJ K ⁻¹ mol ⁻¹ . If no slope value given, allow either units
	$-\Delta S / \Delta S$	1	
2 (c)	ΔG becomes negative	1	Mark independently unless ΔG positive then CE= 0
	So reaction becomes spontaneous/feasible	1	Or reaction can occur below this temperature Or reaction is not feasible above this temperature
2 (d)	Ammonia liquefies (so entropy data wrong/different)	1	Allow any mention of <u>change</u> in state or implied change in state even if incorrect For example, freezing/boiling
3 (a)	Enthalpy change when <u>1 mol</u> of an (ionic) compound/lattice (under standard conditions)	1	Allow heat energy change
	Is dissociated/broken/separated into its (component) ions	1	
	The ions being in the <u>gaseous</u> state (at infinite separation)	1	Mark independently. Ignore any conditions.

Oxford A Level Sciences

AQA Chemistry

17 Thermodynamics Practice questions

3 (b)	There is an <u>attractive</u> force between the <u>nucleus</u> of an O atom and an external <u>electron</u> .	1	Allow any statement that implies attraction between the nucleus and an electron
3 (c)	$Mg^{2+}(g) + O(g) + 2e^{-1}$	1	Ignore lack of state symbols Penalise incorrect state symbols
	$Mg^{2+}(g) + O(g) + e$	1	
	$Mg^{2+}(g) + O^{2-}(g)$	1	
	First new level for Mg ²⁺ and O above last on L Next level for Mg ²⁺ and O ⁻ below that Next level for Mg ²⁺ and O ²⁻ above that and also above that for Mg ²⁺ and O	1	If levels are not correct allow if steps are in correct order with arrows in the correct direction and correct ΔH values Allow +124 Allow M4 with incorrect number of electrons
3 (d)	LE MgO = 602 + 150 + 736 + 1450 + 248 - 142 + 844	1	Note use of 124 instead of 248 CE=0
	= +3888 kJ mol ⁻¹	1	Allow 1 for -3888 Allow no units Penalise wrong units
3 (e)	Forms a protective layer/barrier of MgO / MgO prevents oxygen attacking Mg	1	Allow activation energy is (very) high Allow reaction (very) slow
3 (f)	$\Delta G = \Delta H - T \Delta S$	1	$\Delta S = (\Delta H - \Delta G) / T$
	$\Delta S = (-602 - (-570)) \times 1000 / 298$	1	
	= -107 J K ⁻¹ mol ⁻¹ / -0.107 kJ K ⁻¹ mol ⁻¹	1	If units not correct or missing, lose mark Allow -107 to -108 +107 with correct units scores max 1/3
3 (g)	1 mol of solid and 0.5 mol of gas reactants form 1 mol solid products	1	Decrease in number of moles (of gas/species) Allow gas converted into solid Numbers of moles/species, if given, must be correct
	System becomes more ordered	1	Allow consequential provided ΔS is negative in 1(f) If ΔS is positive in 1(f) can only score M1