Question number	Answer	Marks	Guidance
1 (a)	Charge on oxide <u>ion</u> bigger than on chlor <u>ide</u> or oxide ion smaller than chloride	1	
	or charge density on oxide ion greater than chloride		
	Therefore electrostatic attraction is stronger	1	Can be given independent of first mark
1 (b)	MgO (is a white solid that) forms a suspension (or slightly soluble)	1	
	$MaO + H_{2}O \rightarrow Ma(OH)_{2}$	1	
	or \rightarrow Mg ²⁺ + 2OH		
	pH is 8 to 10	1	
1 (c)	SO ₂ dissolves	1	
	or forms (colourless) solution		
		1	
	$SO_2 + H_2O \rightarrow H_2OO_3$ or $\rightarrow H^+ + HSO_2^-$		
	$or \rightarrow 2H^+ + SO_3^{2^-}$		
		1	mark both pH values
	pH is 1 to 4	1	independently of equations
2	Na ₂ O: vigorous or exothermic reaction;	6	
	or forms a colourless solution, pH of solution		
	Na ₂ O + H ₂ O \rightarrow 2NaOH		
	P_4O_{10} or P_2O_5 : vigorous or exothermic reaction; or forms a colourless solution, pH of solution formed is 0 or 1.		You can write an ionic equation if you prefer.
	$P_4O_{10} + 6H_2O \rightarrow 4H_3PO_4$		You could write an equation from P_2O_5 .
3 (a) (i)	Ionic	1	
3 (a) (ii)	Sodium	1	
3 (a) (iii)	$Na_2O + H_2O \rightarrow 2NaOH$	1	
3 (b) (i)	Covalent	1	
3 (b) (ii)	Phosphorus	1	
3 (b) (iii)	H ₃ PO ₄	1	
3 (c) (i)	macromolecular	1	Accept: giant covalent or giant molecular.
3 (c) (ii)	Silicon	1	

3 (c) (iii)	e.g., CaO + SiO ₂ \rightarrow CaSiO ₃	2	One mark for the base used, i.e., CaO, and one mark for the balanced equation.
4 (a) (i)	P ₄ O ₁₀ or SO ₃	1	This means it will be an acidic solution and therefore an oxide of a non-metal.
4 (a) (ii)	Na ₂ O	1	This means it will be an alkaline solution and therefore an oxide of a metal.
4 (b) (i)	$MgO + 2HNO_3 \rightarrow Mg(NO_3)_2 + H_2O$	1	You could also have an ionic equation, i.e., MgO + $2H^+ \rightarrow Mg^{2+} + H_2O$
4 (b) (ii)	$2NaOH + SiO_2 \rightarrow Na_2SiO_3 + H_2O$	1	You could also have an ionic equation, i.e., $SiO_2 + 2OH^- \rightarrow 2Na^+ + H_2O$
4 (b) (iii)	$3Na2O + 2H_3PO_4 \rightarrow 2Na_3PO_4 + 3H_2O$	1	You could also have an ionic equation, i.e., $Na_2O + 2H^+ \rightarrow 2Na^+ + H_2O$
4 (c)	P ₄ O ₁₀ is molecular or simple covalent. This means that there are weak intermolecular forces between molecules.	4	These forces are van der Waals forces.
	SiO ₂ is a macromolecule or giant covalent molecule.		These bonds must be stated to be covalent and remember they are between the atoms in the giant molecule.
5 (a)	$\begin{array}{l} \text{Na}_2\text{O} + \text{H}_2\text{O} \rightarrow 2\text{NaOH} \\ \text{pH} = 14 \end{array}$	2	Remember oxides of metals give alkaline solutions when
5 (b)	$SO_2 + H_2O \rightarrow H_2SO_3$ pH = 1-3	2	dissolved and oxides of non-metals give acidic solutions when dissolved.
6 (a) (i)	P is Na ₂ O or sodium oxide. Ionic Ions are not free to move in the solid state. Ions are free to move when molten or in aqueous solution. Na ₂ O + H ₂ O \rightarrow 2NaOH	9	Since the identity is asked for, you can give a formula or a name. If a formula is given this must be correct.
6 (a) (ii)	$ \begin{array}{l} \textbf{Q} \text{ is } SO_2 \text{ or sulfur dioxide.} \\ \text{covalent} \\ \text{Intermolecular forces are weak or van der Waals} \\ \text{forces are weak.} \\ SO_2 + H_2O \rightarrow H_2SO_3 \end{array} $		Since the identity is asked for, you can give a formula or a name. If a formula is given this must be correct. The intermolecular forces are not hydrogen bonds.
6 (b) (i)	Amphoteric	6	This is because it reacts with acids and alkalis.

6 (b) (ii)	AI(OH) ₃ + NaOH → NaAI(OH) ₄		In this equation one mark is for stating that R is Al(OH) ₃ and the other for a balanced equation. You could also have ionic equations, e.g. Al(OH) ₃ + OH ⁻ \rightarrow [Al(OH) ₄] ⁻ You could start with the identity of R as Al(OH) ₃ (H ₂ O) ₃ and so the equation would be Al(OH) ₃ (H ₂ O) ₃ + OH ⁻ \rightarrow [Al(OH) ₄ (H ₂ O) ₂] ⁻ + H ₂ O
	$2AI(OH)_3 + 3H_2SO_4 \rightarrow AI_2(SO_4)_3 + 6H_2O$		You could start with Al(OH) ₃ (H ₂ O) ₃ and have H ⁺ as the acid, so the equation would be Al(OH) ₃ (H ₂ O) ₃ + H ⁺ \rightarrow [Al(OH) ₂ (H ₂ O) ₄] ⁺ + H ₂ O In the equation there is one mark for the correct product and one mark for the balanced
			equation.
6 (D) (III)	following answers are acceptable:		
	large lattice energy:		
	 strong covalent bonds; 		
	 ΔH_{soln} is very positive; 		
	 ΔG is very positive; 		
	• The sum of the hydration energies is less than the covalent bond energies.		
7 (a)	White powder / solid / ash / smoke	1	Ignore ppt / fumes
	Bright / white light / flame	1	Allow glows white / glows bright
	$Mg + H_2O \rightarrow MgO + H_2$	1	Ignore state symbols
			Ignore reference to effervescence or gas produced
7 (b)	Mg ²⁺ / magnesium ion has higher charge than Na ⁺	1	Allow Mg ²⁺ ions smaller / greater charge density than Na ⁺ ions Allow Mg atoms smaller than Na (atoms) Allow magnesium has more delocalised electrons Must be a comparison Ignore reference to nuclear charge
	Attracts <u>delocalised / free / sea of</u> electrons more strongly / metal–metal bonding stronger / metallic bonding stronger	1	Wrong type of bonding, mention of molecules CE = 0

7 (c)	Structure: Macromolecular / giant molecule / giant covalent	1	Mark independently
	Bonding: Covalent / giant covalent	1	
	Physical Properties: Any two from: • Hard • Brittle / not malleable • Insoluble	2	Ignore correct chemical properties Ignore strong, high boiling point, rigid
7 (d)		1	Montion of ionic or motallic, can
7 (d)		I	score M1 only
	Structure: Molecular	1	If macromolecular, can score M1 & M3 only
	Bonding: Covalent / shared electron pair	1	
	van der Waals' / dipole-dipole forces <u>between</u> molecules	1	Allow van der Waals intermolecular forces, and dipole–dipole intermolecular forces but do not allow intermolecular forces alone
7 (e)	$SO_2 + H_2O \rightarrow H^+ + HSO_3^-$	1	Products must be ions Allow $SO_2 + H_2O$ $\rightarrow 2H^+ + SO_3^{2-}$ Allow two equations showing intermediate formation of H_2SO_3 that ends up as ions Ignore state symbols Allow multiples
7 (f)	$\begin{array}{c} P_4O_{10} + 6MgO \rightarrow 2Mg_3(PO_4)_2 \\ \\ \mathbf{OR} \ P_4O_{10} + 6MgO \rightarrow 6Mg^{2+} + 4PO_4^{3-} \\ \\ \mathbf{OR} \ P_2O_5 + 3MgO \rightarrow Mg_3(PO_4)_2 \end{array}$	1	Ignore state symbols Allow multiples
8 (a)	MgO is ionic	1	If not ionic, CE = 0
	Melt it	1	If solution mentioned, cannot score M2 or M3
	(Molten oxide) conducts electricity	1	Allow acts as an electrolyte. Cannot score M3 unless M2 is correct
8 (b)	Macromolecular	1	CE = 0 if ionic, metallic or molecular. Allow giant molecule.
	Covalent bonding	1	Giant covalent scores M1 and M2
	Water cannot (supply enough energy to) break the covalent bonds / lattice	e 1	Hydration enthalpy < bond enthalpy.

AQA Chemistry

22 Periodicity Practice questions

8 (c)	(Phosphorus pentoxide's melting point is) lower	1	If M1 is incorrect, can only score M2
	Molecular with covalent bonding	1	M2 can be awarded if molecular mentioned in M3
	Weak / easily broken / not much energy to break intermolecular forces OR weak van der Waals / dipole-dipole forces of attraction between molecular	1	Intermolecular / IMF means same as between molecules.
8 (d)	Reagent (water or acid)	1	Can be awarded in the equation.
	Equation, e.g., MgO + 2HCl \rightarrow MgCl ₂ + H ₂ O	1	$\begin{array}{l} MgO + H_2O \rightarrow Mg(OH)_2 \\ Equations can be ionic but \\ must show all of the reagent, \\ e.g., H^+ + CI^- \\ Simplified ionic equation \\ without full reagent can score \\ M2 only. \\ Allow 6MgO + P_4O_{10} \rightarrow \\ 2Mg_3(PO_4)_2 \end{array}$
8 (e)	$P_4O_{10} + 12NaOH \rightarrow 4Na_3PO_4 + 6H_2O$	1	Allow P_2O_5 and acid salts. Must be NaOH not just hydroxide ions.
9 (a)	To prevent it coming into contact/reacting with oxygen/air	1	Allow because it reacts with air/oxygen And because with air/oxygen it forms an oxide. (Oxide, if identified, must be correct $P_4O_{10}, P_2O_5, P_4O_6, P_2O_6$)
9 (b)	One molecule contains 4P and 10O/the molecular formula is P_4O_{10}	1	Allow exists as P_4O_{10} Do not allow reference to combination of two P_2O_5 molecules Ignore any reference to stability
9 (c)	P4O10 is a bigger molecule (than SO3)/greaterMr/more electrons/ greater surface areaVan der Waals / vdW forces between moleculesare stronger/require more energy to break	1	Penalise SO ₂ for one mark (max 1) CE = 0 if mention of hydrogen bonding/ionic/giant molecule/breaking of covalent bonds
			Do not allow just more van der Waals forces Ignore any reference to dipole– dipole forces
9 (d)	$P_4O_{10} + 6H_2O \to 4H_3PO_4$	1	Allow correct ionic equations Ignore state symbols
	pH must be in the range −1 to +2	1	Allow -1 to +2 Mark independently

AQA Chemistry

22 Periodicity Practice questions

9 (e) (i)	$3MgO + 2H_2PO_4 \rightarrow Mg_2(PO_4)_2 + 3H_2O_4$	1	Allow MaO + $2H^+ \rightarrow Ma^{2+} +$
	$OR MgO + 2H_3PO_4 \rightarrow Mg(H_2PO_4)_2 + H_2O$		H_2O
	$OR MgO + H_3PO_4 \rightarrow MgHPO_4 + H_2O$		Allow magnesium phosphates shown as ions and ionic equations Ignore state symbols
9 (e) (ii)	MgO is sparingly soluble/insoluble/weakly alkaline	1	Excess/unreacted MgO can be filtered off/separated
9 (e) (iii)	An excess of NaOH would make the lake alkaline/toxic/kill wildlife	1	Allow pH increases