A drug is designed to simulate one of the following molecules that adsorbs onto the active site of an enzyme.

Which molecule requires the design of an optically active drug?



(Total 1 mark)

Which one of the following is **not** a correct statement about vitamin C, shown below?

- A It is a cyclic ester.
- **B** It can form a carboxylic acid on oxidation.
- **C** It decolourises a solution of bromine in water.
- **D** It is a planar molecule.

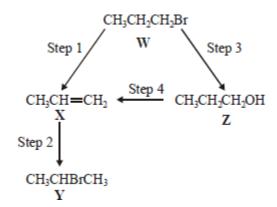
(Total 1 mark)

3

2

In which one of the following mixtures does a redox reaction occur?

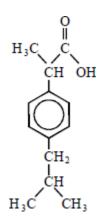
- A ethanal and Tollens' reagent
- **B** ethanoyl chloride and ethanol
- **C** ethanal and hydrogen cyanide
- **D** ethanoic acid and sodium hydroxide


- Propanoic acid reacts with methanol in the presence of a small amount of concentrated sulphuric acid. The empirical formula of the ester formed is
  - A CH<sub>2</sub>O
  - $B C_2H_6O_2$
  - $\mathbf{C}$   $C_2H_4O_2$
  - D  $C_2H_4O$

(Total 1 mark)

- Which one of the following is **not** a correct general formula for the non-cyclic compounds listed?
  - **A** alcohols  $C_nH_{2n+2}O$
  - **B** aldehydes C<sub>n</sub>H<sub>2n+1</sub>O
  - $\mathbf{C}$  esters  $C_nH_{2n}O_2$
  - $\mathbf{C}$  primary amines  $C_nH_{2n+3}N$

(Total 1 mark)


**6** For this question refer to the reaction scheme below.



Which one of the following statements is **not** correct?

- A Reaction of **W** with sodium cyanide followed by hydrolysis of the resulting product gives propanoic acid.
- **B** Mild oxidation of **Z** produces a compound that reacts with Tollens' reagent, forming a silver mirror.
- **C Z** reacts with ethanoic acid to produce the ester propyl ethanoate.
- **C W** undergoes addition polymerisation to form poly(propene).

Ibuprofen is a drug used as an alternative to aspirin for the relief of pain, fever and inflammation. The structure of ibuprofen is shown below.



Which one of the following statements is **not** correct?

- A It has optical isomers.
- **B** It liberates carbon dioxide with sodium carbonate solution.
- **D** It undergoes esterification with ethanol.
- **D** It undergoes oxidation with acidified potassium dichromate(VI).

(Total 1 mark)

8

Butan-1-ol was converted into butyl propanoate by reaction with an excess of propanoic acid. In the reaction, 6.0 g of the alcohol gave 7.4 g of the ester. The percentage yield of ester was

- **A** 57
- **B** 70
- **C** 75
- **D** 81

(Total 1 mark)

9

Which one of the following would **not** react with aqueous silver nitrate to produce a precipitate that is soluble in concentrated aqueous ammonia?

- A CaBr<sub>2</sub>
- $\mathbf{B} \quad [\mathsf{COCl}_4]^{2^-}$
- **C**  $(CH_3)_4N^+I^-$
- D CH<sub>3</sub>COCI



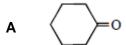
Which compound is formed by the reaction of ethane-1,2-diol with an acid?

(Total 1 mark)

11

Which one of the following types of reaction mechanism is not involved in the above sequence?

$$CH_3CH_2CH_3 \longrightarrow (CH_3)_2CHCI \longrightarrow (CH_3)_2CHCN$$




$$(CH_3)_2CHCH_2NHCOCH_3 \leftarrow (CH_3)_2CHCH_2NH_2$$

- A free-radical substitution
- B nucleophilic substitution
- **C** elimination
- D nucleophilic addition-elimination

The compound lithium tetrahydridoaluminate(III), LiAlH<sub>4</sub>, is a useful reducing agent. It behaves in a similar fashion to NaBH<sub>4</sub>. Carbonyl compounds and carboxylic acids are reduced to alcohols. However, LiAlH<sub>4</sub> also reduces water in a violent reaction so that it must be used in an organic solvent.

Which one of the following can be reduced by LiAlH<sub>4</sub> to a primary alcohol?



$$\mathsf{B} \qquad \bigcirc \mathsf{C} \mathsf{C} \mathsf{O} \mathsf{-H}$$

(Total 1 mark)

An excess of methanol was mixed with 12 g of ethanoic acid and an acid catalyst. At equilibrium the mixture contained 8 g of methyl ethanoate. The percentage yield of ester present was

- **A** 11
- **B** 20
- **C** 54
- **D** 67

(Total 1 mark)

14

13

Acid hydrolysis of  $H_3C$  C=0 produces

- A CH<sub>3</sub>CH(OH)CH<sub>2</sub>CH<sub>2</sub>COOH
- B CH<sub>2</sub>(OH)CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>COOH
- C CH<sub>3</sub>CH(OH)CH<sub>2</sub>CH<sub>2</sub>OCHO
- D CH<sub>2</sub>(OH)CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OCHO

A 
$$H_3C-C-C-C-C$$
 $CH_3$ 
 $CH_2CH_3$ 

C 
$$H_2C$$
— $CH_2$ — $C$ 
 $O$ 
 $CH_3$ 
 $O$ — $CH_2CH_3$ 

D 
$$CH_3CH_2-C$$
 $O$ 
 $CH_3$ 
 $CH$ 

- Hydrolysis of the ester, CH<sub>3</sub>COOCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, produces ethanoic acid. In an experiment, 2.04 g of the ester was used and 0.90 g of ethanoic acid was produced. The percentage yield of ethanoic acid was:
  - **A** 44
  - **B** 59
  - **C** 75
  - **D** 90

(Total 1 mark)

- How many structural isomers, which are esters, have the molecular formula C<sub>4</sub>H<sub>8</sub>O<sub>2</sub>?
  - **A** 2
  - **B** 3
  - **C** 4
  - **D** 5

CH<sub>2</sub>O is the empirical formula of

- A methanol
- B methyl methanoate
- **C** ethane-1,2-diol
- **D** butanal

(Total 1 mark)

19

| Summarised dire                  | Summarised directions for recording responses to multiple completion questions |                             |                        |  |  |  |  |
|----------------------------------|--------------------------------------------------------------------------------|-----------------------------|------------------------|--|--|--|--|
| A<br>(i), (ii) and (iii)<br>only | <b>B</b><br>(i) and (iii) only                                                 | <b>C</b> (ii) and (iv) only | <b>D</b><br>(iv) alone |  |  |  |  |

Isomers of the ester  $HCOOCH_2CH_2CH_3$ , include

- (i) ethyl ethanoate
- (ii) methyl propanoate
- (iii) butanoic acid
- (iv) butyl methanoate

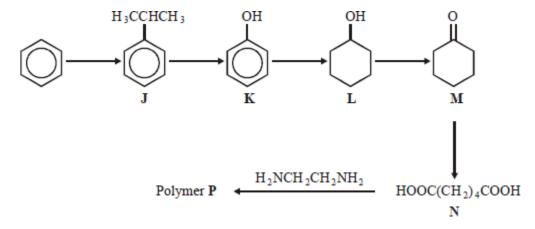
(Total 1 mark)

20

Ethanoyl chloride reacts with methylbenzene forming compound  ${\bf X}$  according to the equation below.

If the experimental yield is 40.0%, the mass in grams of **X** ( $M_r = 134.0$ ) formed from 18.4 g of methylbenzene ( $M_r = 92.0$ ) is

- **A** 26.8
- **B** 16.1
- **C** 10.7
- **D** 7.4


In a reaction which gave a 27.0% yield, 5.00 g of methylbenzene were converted into the explosive 2,4,6-trinitromethylbenzene (TNT) ( $M_r = 227.0$ ). The mass of TNT formed was

- **A** 1.35 g
- **B** 3.33 g
- **C** 3.65 g
- **D** 12.34 g

(Total 1 mark)

**22** 

This question is about the following reaction scheme which shows the preparation of polymer **P**.



If 1.0 kg of benzene gave 0.98 kg of J, the percentage yield of J was

- **A** 64
- **B** 66
- **C** 68
- **D** 70

(Total 1 mark)

23

In which one of the following reactions is the role of the reagent stated correctly?

|   | Reaction                                                                                      | Role of reagent                           |
|---|-----------------------------------------------------------------------------------------------|-------------------------------------------|
| Α | $TiO_2 + 2C + 2Cl_2 \rightarrow TiCl_4 + 2CO$                                                 | TiO <sub>2</sub> is an oxidising agent    |
| В | $HNO_3 + H_2SO_4 \rightarrow H_2NO_3^+ + HSO_4^-$                                             | HNO <sub>3</sub> is a Brønsted-Lowry acid |
| С | $\text{CH}_3\text{COCI} + \text{AICI}_3 \rightarrow \text{CH}_3\text{CO}^+ + \text{AICI}_4^-$ | AICI <sub>3</sub> is a Lewis base         |
| D | $2\text{CO} + 2\text{NO} \rightarrow 2\text{CO}_2 + \text{N}_2$                               | CO is a reducing agent                    |

The relative molecular mass  $(M_r)$  of benzene-1,4-dicarboxylic acid is

- **A** 164
- **B** 166
- **C** 168
- **C** 170

(Total 1 mark)

25

1,3-dinitrobenzene can be prepared by heating nitrobenzene with a mixture of fuming nitric acid and concentrated sulphuric acid. The reaction can be represented by the following equation.

$$NO_2$$
 +  $NO_2$ <sup>+</sup> +  $NO_2$  +  $H^4$ 

If the yield of the reaction is 55%, the mass of 1,3-dinitrobenzene produced from 12.30 g of nitrobenzene is

- **A** 16.90 g
- **B** 16.80 g
- **C** 9.30 g
- **D** 9.24 g

(Total 1 mark)

26

Which one of the following can react both by nucleophilic addition and by nucleophilic substitution?

Which one of the following does not contain any delocalised electrons?

- A poly(propene)
- **B** benzene
- **C** graphite
- **D** sodium

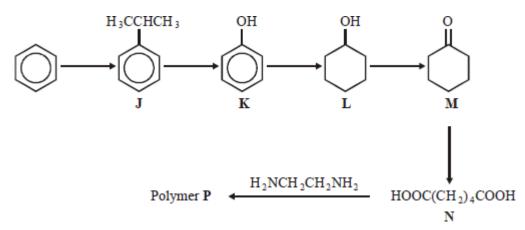
(Total 1 mark)

28

Which one of the following reactions does **not** involve donation of an electron pair?

A 
$$H^+ + CH_3NH_2 \rightarrow CH_3NH_3^+$$

$$\mathbf{B} \qquad \mathsf{AICI}_3 + \mathsf{CI}^- \to \mathsf{A1C1}_4^-$$


C 
$$CH_3CI + CN^- \rightarrow CH_3CN + CI^-$$

$$\mathbf{D} \qquad \frac{1}{2}\mathrm{Cl}_2 + \mathrm{l}^- \rightarrow \mathrm{Cl}^- + \, \frac{1}{2}\mathrm{l}_2$$

(Total 1 mark)

29

This question is about the following reaction scheme which shows the preparation of polymer P.



Polymer **P** is formed in a two-step reaction from **N**. The first stage is a neutralisation reaction. The volume, in cm<sup>3</sup>, of a 0.20 mol dm<sup>-3</sup> solution of  $H_2NCH_2CH_2NH_2$  required to neutralise 6.8 ×  $10^{-3}$ mol of the acid **N** is

- **A** 17
- **B** 34
- **C** 68
- **D** 136

| 30 | Whic                                                                            | Which compound can polymerise by reaction with itself?          |   |                |  |  |  |
|----|---------------------------------------------------------------------------------|-----------------------------------------------------------------|---|----------------|--|--|--|
|    | A                                                                               | NH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub> | 0 |                |  |  |  |
|    | В                                                                               | CH <sub>3</sub> CH <sub>2</sub> CONH <sub>2</sub>               | 0 |                |  |  |  |
|    | С                                                                               | HOOCCH₂COOH                                                     | 0 |                |  |  |  |
|    | D                                                                               | NH <sub>2</sub> CH <sub>2</sub> COCI                            | 0 | (Total 1 mark) |  |  |  |
| 31 | Terylene is made by reacting benzene-1,4-dicarboxylic acid and ethane-1,2-diol. |                                                                 |   |                |  |  |  |
|    | Terylene is                                                                     |                                                                 |   |                |  |  |  |
|    | Α                                                                               | an addition polymer.                                            |   |                |  |  |  |
|    | В                                                                               | a polyamide.                                                    |   |                |  |  |  |
|    | С                                                                               | a polyester.                                                    |   |                |  |  |  |
|    | D                                                                               | a nylon.                                                        |   | (Total 4 mark) |  |  |  |
|    |                                                                                 |                                                                 |   | (Total 1 mark) |  |  |  |

## Mark schemes С 2



**3** 

[1] [1]

**6** [1]

[1] **8** 

8 [1]

10 10 [1]

**1**1 [1]

**1**2

[1]

13 [1]

14 [1]

15 [1]

16 [1]

1<sup>C</sup>7 [1]

1<mark>8</mark>

[1]

[1]

[1]

[1]

[1]

