Q1.What is the pH of a $0.020 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of a diprotic acid which is completely dissociated?

A $\quad 1.00$

B 1.40

C $\quad 1.70$

D $\quad 4.00$

(Total 1 mark)

Q2.The acid dissociation constant, K_{\imath}, of a weak acid HA has the value $2.56 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$.

What is the pH of a $4.25 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{3}$ solution of HA?
A 5.96 \square

B $\quad 3.59$

C 2.98

D $\quad 2.37$ \circ
(Total 1 mark)

Q3.This question is based on the reactions and compounds shown in the scheme below.

A $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of \mathbf{X} is found to have a pH of 2.50 . The value of K_{a} in $\mathrm{mol} \mathrm{dm}^{-3}$ is
A $\quad 3.16 \times 10^{-2}$
B $\quad 3.16 \times 10^{-3}$
C $\quad 1.00 \times 10^{-4}$

Q4.Use the information about the following solutions to answer the question below.
Solution F: This is a mixture of 1 mol of propanoic acid, 1 mol of methanol and 2 mol of water.

Solution G: This was originally the same mixture as solution \mathbf{F} but it has been left to reach equilibrium.

Compared to the pH of solution \mathbf{F}, the pH of solution \mathbf{G} will be
A considerably lower.
B slightly lower.
C slightly higher.
D exactly the same.

Q5.This question is about the following reaction scheme which shows the preparation of polymer \mathbf{P}.

\mathbf{K} is a weak acid with a K_{a} of 9.95 . The pH of a $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of \mathbf{K} is
A 4.48
B 4.98
C 5.48
D 5.98

Q6.In which one of the following reactions is the role of the reagent stated correctly?

	Reaction	Role of reagent
A	$\mathrm{TiO}_{2}+2 \mathrm{C}+2 \mathrm{Cl}_{2} \rightarrow \mathrm{TiCl}_{4}+2 \mathrm{CO}$	TiO_{2} is an oxidising agent
B	$\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{NO}_{3}^{+}+\mathrm{HSO}_{4}^{-}$	HNO_{3} is a Brønsted-Lowry acid
C	$\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{AlCl}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CO}_{+}+\mathrm{AlCl}_{-}^{-}$	AlCl_{3} is a Lewis base
D	$2 \mathrm{CO}+2 \mathrm{NO} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{N}_{2}$	CO is a reducing agent

(Total 1 mark)

Q7.Use the information below to answer this question.
A saturated solution of magnesium hydroxide, $\mathrm{Mg}(\mathrm{OH})_{2}$, contains 0.1166 g of $\mathrm{Mg}(\mathrm{OH})_{2}$ in $10.00 \mathrm{dm}^{3}$ of solution. In this solution the magnesium hydroxide is fully dissociated into ions.

Which one of the following is the pH of a solution of magnesium hydroxide containing 4.0
$\times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$ of hydroxide ions at 298 K ?
($K_{w}=1.0 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$ at 298 K)
A $\quad 9.6$
B 9.5
C 8.6
D 8.3
(Total 1 mark)

Q8.This question refers to the reaction sequence below.

HCN is a weak acid with a $\mathrm{p} K_{\mathrm{a}}$ value of 9.40 . If a $0.010 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of HCN was
used in the first step, the concentration of cyanide ions, in $\mathrm{mol} \mathrm{dm}^{-3}$, would be
A $\quad 2.0 \times 10^{-6}$
B $\quad 6.4 \times 10^{-5}$
C $\quad 2.0 \times 10^{-5}$
D $\quad 3.1 \times 10^{-1}$
(Total 1 mark)

Q9.This question is about the reaction between propanone and an excess of ethane-1,2-diol, the equation for which is given below.

In a typical procedure, a mixture of 1.00 g of propanone, 5.00 g of ethane-1,2-diol and 0.100 g of benzenesulphonic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{3} \mathrm{H}$, is heated under reflux in an inert solvent. Benzenesulphonic acid is a strong acid.

If 0.100 g of the strong monoprotic acid, benzenesulphonic acid, was dissolved in $100 \mathrm{~cm}^{3}$ of water, the pH of the solution would be

A 0.20
B 1.20
C 2.20
D 3.20
(Total 1 mark)

Q10.An aqueous solution contains 4.0 g of sodium hydroxide in $250 \mathrm{~cm}^{3}$ of solution.
($K_{w}=1.00 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$)
The pH of the solution is
A 13.0
B 13.3
C $\quad 13.6$
D 13.9

Q11.The equation and rate law for the reaction of substance P with substance Q are given below.

$$
\begin{aligned}
& 2 \mathrm{P}+\mathrm{Q} \rightarrow \mathrm{R}+\mathrm{S} \\
& \text { rate }=k[\mathrm{P}]^{2}[\mathrm{H}+]
\end{aligned}
$$

Under which one of the following conditions, all at the same temperature, would the rate of reaction be slowest?

$$
[\mathrm{P}] / \mathrm{mol} \mathrm{dm}^{-3} \quad \mathrm{pH}
$$

$\begin{array}{lll}\text { A } & 0.1 & 0\end{array}$
$\begin{array}{lll}B & 1 & 2\end{array}$
$\begin{array}{lll}\text { C } & 3 & 3\end{array}$
D $10 \quad 4$
(Total 1 mark)

Q12.Addition of which one of the following to $10 \mathrm{~cm}^{3}$ of 1.0 M NaOH would result in the pH being halved?

A $\quad 10 \mathrm{~cm}^{3}$ of water
B $\quad 100 \mathrm{~cm}^{3}$ of water
C $\quad 5 \mathrm{~cm}^{3}$ of 1.0 M HCl
D $\quad 10 \mathrm{~cm}^{3}$ of 1.0 M HCl

Q13.A solution of sodium ethanoate has a pH of 8.91 at $25^{\circ} \mathrm{C}$. The hydrogen ion and hydroxide ion concentrations in this solution are

A $\quad\left[\mathrm{H}^{+}\right]=1.00 \times 10^{-9} \mathrm{~mol} \mathrm{dm}^{-3}\left[\mathrm{OH}^{-}\right]=1.00 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$
B $\quad\left[\mathrm{H}^{+}\right]=1.00 \times 10^{-9} \mathrm{~mol} \mathrm{dm}^{-3}\left[\mathrm{OH}^{-}\right]=8.13 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}$
C $\quad\left[\mathrm{H}^{+}\right]=1.23 \times 10^{-9} \mathrm{~mol} \mathrm{dm}^{-3}\left[\mathrm{OH}^{-}\right]=1.00 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$
D $\quad\left[\mathrm{H}^{+}\right]=1.23 \times 10^{-9} \mathrm{~mol} \mathrm{dm}^{-3}\left[\mathrm{OH}^{-}\right]=8.13 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}$

Q14.A weak acid HA dissociates in aqueous solution as shown below

$$
\mathrm{HA}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{A}-(\mathrm{aq}) \quad \Delta H=+20 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Which one of the following changes will result in a decrease in the pH of an aqueous solution of the acid?

A addition of a little aqueous sodium hydroxide solution
B raising the temperature of the solution
C dissolving a little of the sodium salt, NaA , in the solution
D adding a platinum catalyst to the solution

Q15. The pH of 0.001 M NaOH at $25^{\circ} \mathrm{C}$ is
A 13
B 11
C 9
D 3

Q16. Which one of the following could be true in an aqueous solution of sodium hydroxide?
A $\left[\mathrm{H}^{+}\right]=\left(\mathrm{OH}^{-}\right]$
B $\mathrm{pH}=-\log _{10}\left[\mathrm{OH}^{-}\right]$
C $\mathrm{pH}=1.2$
D $\quad \mathrm{pH}=12.8$
(Total 1 mark)

Q17.Which one of the following is the change in units of pH which occurs when $10.0 \mathrm{~cm}^{3}$ of a
1.0 M solution of a strong monoprotic acid are made up to $1.0 \mathrm{dm}^{3}$ with water?

A 1
B 2
C 3

D 5

M1.B

M2.C

M3.C

M4.C

M5.C

M6.D

M7.A

M8.A

M10.C

M11.C

M12.D

M13.D

M14.B

M15.B

M16.D

M17.B

