Hydrogen peroxide is a powerful oxidising agent. Acidified hydrogen peroxide reacts with iodide ions to form iodine according to the following equation.

$$
\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

The initial rate of this reaction is investigated by measuring the time taken to produce sufficient iodine to give a blue colour with starch solution.

A series of experiments was carried out, in which the concentration of iodide ions was varied, while keeping the concentrations of all of the other reagents the same. In each experiment the time taken (t) for the reaction mixture to turn blue was recorded.

The initial rate of the reaction can be represented as $\left(\frac{1}{t}\right)$, and the initial concentration of iodide ions can be represented by the volume of potassium iodide solution used.

A graph of $\log _{10}\left(\frac{1}{t}\right)$ on the y-axis against $\log _{10}$ (volume of $\left.\mathrm{KI}(\mathrm{aq})\right)$ is a straight line. The gradient of this straight line is equal to the order of the reaction with respect to iodide ions.

The results obtained are given in the table below. The time taken for each mixture to turn blue was recorded on a stopclock graduated in seconds.

Expt.	Volume of $\mathbf{K I}(\mathbf{a q}) / \mathbf{c m}^{3}$	$\mathbf{l o g}_{10}($ volume of $\mathbf{K l}(\mathbf{a q}))$	Time / s	$\mathbf{l o g}_{10}\left(\frac{1}{t}\right)$
1	5	0.70	71	-1.85
2	8	0.90	46	-1.66
3	10	1.00	37	-1.57
4	15	1.18	25	-1.40
5	20	1.30	19	-1.28
6	25	1.40	14	-1.15

(a) Use the results given in the table to plot a graph of $\log _{10}\left(\frac{1}{t}\right)$ on the y-axis against $\log _{10}$ (volume of $\mathrm{KI}(\mathrm{aq})$).

Draw a straight line of best fit on the graph, ignoring any anomalous points.

(b) Determine the gradient of the line you have drawn. Give your answer to two decimal places. Show your working.
\qquad
\qquad
\qquad
(c) Deduce the order of reaction with respect to iodide ions.
\qquad
(d) A student carried out the experiment using a flask on the laboratory bench. The student recorded the time taken for the reaction mixture to turn blue. State one way this method could be improved, other than by repeating the experiment or by improving the precision of time or volume measurements. Explain why the accuracy of the experiment would be improved.

Improvement \qquad
\qquad
Explanation \qquad
\qquad

2 When iodine molecules are dissolved in aqueous solutions containing iodide ions, they react to form triiodide ions $\left(I_{3}{ }^{-}\right)$.

$$
\mathrm{I}_{2}+\mathrm{I}^{-} \longrightarrow \mathrm{I}_{3}^{-}
$$

The rate of the oxidation of iodide ions to iodine by peroxodisulfate (VI) ions $\left(\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right)$ was studied by measuring the concentration of the $\mathrm{I}_{3}-$ ions at different times, starting at time $=0$, when the reactants were mixed together. The concentration of the $\mathrm{I}_{3}{ }^{-}$ions was determined by measuring the absorption of light using a spectrometer.

The table below shows the results.

Time /s	Concentration of $\mathrm{I}_{3}-/ \mathrm{mol} \mathrm{dm}^{-3}$
10	0.23
20	0.34
30	0.39
40	0.42
50	0.47
60	0.44
70	0.45

(a) Plot the values of the concentration of I_{3}^{-}(y-axis) against time on the grid below.

(b) A graph of these results should include an additional point. On the grid, draw a ring around this additional point.
(c) Draw a best-fit curve on the grid, including the extra point from part (b).
(d) Draw a tangent to your curve at time $=30$ seconds. Calculate the slope (gradient) of this tangent and hence the rate of reaction at 30 seconds. Include units with your final answer. Show your working.
\qquad
\qquad
\qquad

3 A student investigated how the initial rate of reaction between sulfuric acid and magnesium at $20^{\circ} \mathrm{C}$ is affected by the concentration of the acid.

The equation for the reaction is

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{Mg}(\mathrm{~s}) \longrightarrow \mathrm{MgSO}_{4}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

(a) The student made measurements every 20 seconds for 5 minutes. The student then repeated the experiment using double the concentration of sulfuric acid.

State a measurement that the student should make every 20 seconds. Identify the apparatus that the student could use to make this measurement.
\qquad
\qquad
\qquad
\qquad
(b) State one condition, other than temperature and pressure, that would need to be kept constant in this investigation.
\qquad
\qquad
(c) When the student had finished the investigation, an excess of sodium hydroxide solution was added to the reaction mixture. This was to neutralise any unreacted sulfuric acid. The student found that a further reaction took place, producing magnesium hydroxide.
(i) Draw a diagram to show how the student could separate the magnesium hydroxide from the reaction mixture.
(ii) Suggest one method the student could use for removing soluble impurities from the sample of magnesium hydroxide that has been separated.
\qquad
\qquad
\qquad
\qquad

4 Calamine lotion can contain a mixture of zinc carbonate and zinc oxide in suspension in water. A manufacturer of calamine lotion claims that a sample contains 15.00 g of zinc carbonate and 5.00 g of zinc oxide made up to $100 \mathrm{~cm}^{3}$ with distilled water.
(a) A chemist wanted to check the manufacturer's claim. The chemist took a $20.0 \mathrm{~cm}{ }^{3}$ sample of the calamine lotion and added it to an excess of sulfuric acid.
The volume of carbon dioxide evolved was measured over time. The chemist's results are shown in the table.

Time /s	0	15	30	45	60	75	90	105	120	135
Volume $/ \mathbf{c m}^{3}$	0	135	270	380	470	530	560	570	570	570

(i) Plot a graph of the results in the table on the grid. The volume should be on the y-axis. Draw a best-fit curve through all the points.
(ii) Estimate the time taken for the reaction to be completed.

(b) (i) The volume of carbon dioxide in part (a) was measured at 293 K and at a pressure of 100 kPa .

Use information from your graph to calculate the maximum amount, in moles, of carbon dioxide evolved from the zinc carbonate in this $20.0 \mathrm{~cm}^{3}$ sample.

The gas constant, $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Use your answer to part (i) to calculate the mass of zinc carbonate in the $20.0 \mathrm{~cm}^{3}$ sample of calamine lotion.
(If you were unable to complete part (i), you may assume that the amount of carbon dioxide evolved was 0.0225 mol . This is not the correct answer.)
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) Calculate the difference between your answer to part (ii) and the manufacturer's claim that there are 15.00 g of zinc carbonate in $100 \mathrm{~cm}^{3}$ of the calamine lotion.

Express this difference as a percentage of the manufacturer's claim.
(If you were unable to complete part (ii), you may assume that the mass of zinc carbonate in the $20 \mathrm{~cm}^{3}$ sample of calamine lotion was 2.87 g . This is not the correct answer.)

Difference \qquad
Percentage \qquad
\qquad
(c) Draw a diagram of a suitable apparatus needed to perform the experiment outlined in part (a). Include in your diagram a method for collecting and measuring the carbon dioxide. The apparatus should be airtight.

5 In a test, aqueous iron(III) ions are reduced to aqueous iron(II) ions by iodide ions.
This reaction could be used to provide electrical energy in a cell.
(a) The standard electrode potential for the reduction of iron(III) ions into iron(II) ions can be measured by connecting a suitable electrode to a standard hydrogen electrode.
Draw a clearly labelled diagram to show the components and reagents, including their concentrations, in this $\mathrm{Fe}(\mathrm{III}) / \mathrm{Fe}(\mathrm{II})$ electrode.
Do not draw the salt bridge or the standard hydrogen electrode.
(b) A salt bridge is used to complete the cell. This could be prepared using potassium nitrate solution and filter paper.

State the purpose of the salt bridge. State one essential requirement of the soluble ionic compound used to make the salt bridge.

Purpose of salt bridge \qquad
\qquad
Requirement \qquad
\qquad
(Total 5 marks) and zinc.
(a) The conventional representation for the Daniell cell is

$$
\mathrm{Zn}(\mathrm{~s})\left|\mathrm{Zn}^{2+}(\mathrm{aq})\right|\left|\mathrm{Cu}^{2+}(\mathrm{aq})\right| \mathrm{Cu}(\mathrm{~s})
$$

The e.m.f. of this cell under standard conditions is +1.10 V .
Deduce the half-equations for the reactions occurring at the electrodes.
At Zn electrode \qquad
At Cu electrode \qquad
(b) A Daniell cell was set up using $100 \mathrm{~cm}^{3}$ of a $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ copper(II) sulfate solution. The cell was allowed to produce electricity until the concentration of the copper(II) ions had decreased to $0.50 \mathrm{~mol} \mathrm{dm}^{-3}$.

Calculate the decrease in mass of the zinc electrode. Show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) You are provided with the Daniell cell referred to in part (b), including a zinc electrode of known mass.

Briefly outline how you would carry out an experiment to confirm your answer to part (b).
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

7 (a) Use data from the table below to explain why dilute hydrochloric acid cannot be used to acidify potassium manganate(VII) in a titration.

			E^{\ominus} / V
$\mathrm{MnO}_{4}{ }^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{e}^{-}$	\rightarrow	$\mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.51
$\mathrm{Cl}_{2}(\mathrm{aq})+2 \mathrm{e}^{-}$	\rightarrow	$2 \mathrm{Cl}^{-}(\mathrm{aq})$	+1.36
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-}$	\rightarrow	$\mathrm{H}_{2}(\mathrm{aq})$	0.00

\qquad
\qquad
\qquad
\qquad
\qquad
(b) Use information from the table in part (a) to determine the minimum volume, in cm^{3}, of $0.500 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid that is required for a titre of $25.0 \mathrm{~cm}^{3}$ of $0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium manganate(VII) solution. Show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) In each titration using potassium manganate(VII), a large excess of dilute sulfuric acid is used to avoid any possibility of the brown solid MnO_{2} forming.
(i) Deduce a half-equation for the reduction of MnO_{4}^{-}ions in acidic solution to form MnO_{2}.
\qquad
\qquad
(ii) Give two reasons why it is essential to avoid this reaction in a titration between potassium manganate(VII) and iron(II) ions.
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Potassium manganate(VII) is an oxidising agent.

Suggest one reason why a $0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of potassium manganate(VII) does not need to be kept away from flammable material.
\qquad
\qquad
\qquad

8 An experiment was carried out to measure the e.m.f. of this cell.

$$
\mathrm{Al}(\mathrm{~s})\left|\mathrm{Al}^{3+}(\mathrm{aq})\right|\left|\mathrm{H}^{+}(\mathrm{aq})\right| \mathrm{H}_{2}(\mathrm{~g}) \mid \mathrm{Pt}(\mathrm{~s})
$$

(a) The aluminium used as the electrode is rubbed with sandpaper prior to use.

Suggest the reason for this.
\qquad
\qquad
\qquad
(b) Draw a labelled diagram of a suitable apparatus for the right-hand electrode in this cell. You do not need to include the salt bridge or the external electrical circuit.
(c) A simple salt bridge can be prepared by dipping a piece of filter paper into potassium carbonate solution. Explain why such a salt bridge would not be suitable for use in this cell.
\qquad
\qquad
\qquad
\qquad

9 An equation for the decomposition of hydrogen peroxide is shown below.

$$
2 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}
$$

State the measurements you would take in order to investigate the rate of this reaction.
\qquad
\qquad
\qquad
\qquad

10 In an experiment to determine the rate of a reaction, the volume of gas produced in the reaction was measured at regular intervals for several minutes.
(a) State one experimental condition that must be kept constant during the experiment.
\qquad
\qquad
(b) Describe how the initial rate of this reaction can be determined from a graph of volume of gas produced against time.
\qquad
\qquad
(a) $\quad \log (1 /$ time $)$ on the y-axis $+\log (\mathrm{vol})$ on x-axis

If axes unlabelled use data to decide that $\log (1 /$ time $)$ is on the y-axis

Sensible scales
Lose this mark if the plotted points do not cover at least half of the paper
Lose this mark if the graph plot goes off the squared paper
Lose this mark if plots a non-linear / broken scale
Lose this mark if uses an ascending y-axis of negative numbers
1
Plots points correctly \pm one square

Line through the points is smooth
Lose this mark if the candidate's line is doubled

Line through the points is best fit - ignores last point
Must recognise that point at $25 \mathrm{~cm}^{3}$ is an anomaly
If wrong graph, mark consequentially on anomaly if correctly plotted.
A kinked graph loses smooth and best fit marks
(b) Uses appropriate x and y readings

Allow taken from table or taken or drawn on graph
Must show triangle on graph or such as $\frac{1.65-1.2}{1.4-0.9}$
Correctly calculates gradient 0.95 ± 0.02
Ignore positive or negative sign
Correct answer only with no working scores this mark

Answer given to 2 decimal places
(c) First order or order is 1

Allow consequential answer from candidate's results
(d) Thermostat the mixture / constant temperature / use a water bath or Colorimeter / uv-visible spectrometer / light sensor to monitor colour change

Reaction / rate affected by temperature change or Eliminates human error in timing / more accurate time of colour change

2 (a) Sensible scales

Plotted points (including 0,0) must cover more than half the graph paper.
If axis wrong way round lose this mark but mark on consequentially. Do not allow broken axis.

1
Plots points correctly
(b) Ring around the origin
(c) Line through points is smooth

Line must pass within ± 1 small square of each plotted point except the anomaly (allow one plot ± 2 small square - at 40 or 60 s).

Line through points is best fit and ignores anomaly (allow one plot ± 2 small square)
Lose this mark if student's line is doubled.
Kinked line loses this mark.
Lose this mark if the line does not pass through the origin + / - 1 small square.
Lose this mark if the line deviates to anomaly.
(d) Draws suitable tangent

Must touch the curve at 30s and must not cross the curve.
Lose this mark if the tangent is unsuitable but mark on.

1

Chooses appropriate x and y values from their graph
Mark consequentially if axes plotted the wrong way around.
Allow information clearly shown on graph.

Correctly calculates y / x
Difference in x values and y values must be at least 10 small squares in either direction.

Gives answer with correct units (mol dm ${ }^{-3} \mathrm{~s}^{-1}$) or correct variant
Lose this mark if answer not to minimum of 2 significant figures and no units or incorrect units are given.
If student has used axis the wrong way round, the unit mark can be awarded for either the correct unit based on their graph or for the correct unit for rate.

Suitable named piece of equipment
Gas syringe (or inverted burette or measuring cylinder, as long as student has referred to the cylinder being filled with water) / balance.
Equipment must be correct for the measurement stated.
(b) Any one of:

- Mass of magnesium

Allow amount of magnesium.

- Surface area of magnesium
(c) (i) Gravity: Conical flask or beaker and funnel /

Vacuum: Sealed container with a side arm and Buchner or Hirsch funnel
Must be either gravity filtration (with a V-shaped funnel) or vacuum filtration (with a side-arm conical flask) appropriately drawn.

Filter paper
Must show filter paper as at least two sides of a triangle (V-shaped) for gravity filtration or horizontal filter paper for vacuum filtration.
(ii) Wash with / add (a small amount of cold) water Ignore filtering.
[6]
4
(a) (i) Uses sensible scales. Lose this mark if the plotted points do not cover half of the paper. Lose this mark if the graph plot goes off the squared paper Lose this mark if volume is plotted on the \underline{x}-axis

All points plotted correctly
Allow \pm one small square.

Smooth curve from 0 seconds to at least 135 seconds - the line must pass through or close to all points (\pm one small square).

Make some allowance for the difficulties of drawing a curve but do not allow very thick or doubled lines.
(ii) Any value in the range 91 to 105 s

Allow a range of times within this but not if 90 quoted.
(b) (i) Using $\mathrm{pV}=\mathrm{nRT}$

This mark can be gained in a correctly substituted equation.
(ii) Mol of $\mathrm{ZnCO}_{3}=0.0234$

Mark consequentially on Q6
M1

Mass of $\mathrm{ZnCO}_{3}=\mathrm{M} 1 \times 125.4=2.9(3)$ or $2.9(4) \mathrm{g}$ If 0.0225 used then mass $=2.8(2) \mathrm{g}$

M2
(iii) Difference $=(15.00 / 5)-$ Ans to b If 2.87 g used then percentage is 4.3

M1
1
Percentage $=(\mathrm{M} 1 / 3.00) \times 100$
Ignore precision beyond 2 significant figures in the final answer If 2.82 g used from (ii) then percentage $=6.0$

M2
1
(c) A reaction vessel which is clearly airtight round the bung

Gas collection over water or in a syringe
Collection vessel must be graduated by label or markings Ignore any numbered volume markings.

5 (a) Platinum electrode
Solution in beaker is a mixture of named soluble iron(II) compound and named soluble iron(III) compound

Allow correct formulae for the iron compounds.

Concentrations of Fe (II) and Fe (III) ions are both $1 \mathrm{~mol} \mathrm{dm}^{-3}$
Ignore any references to temperature.
If eg $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ used then concentration must be 0.5
(b) Purpose: Allow movement of ions between electrodes

Allow to maintain an electric circuit.
Do not allow reference to movement of electrons in salt bridge.

Requirement: Must not react with the electrolyte / ions in solution
Do not allow 'must not react' without further qualification.

(a) $\mathrm{Zn}(\mathrm{s}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}$

If equations reversed, allow M1 only.

$$
\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{~s})
$$

Ignore state symbols.
(b) Moles of copper (II) reacted $=(100 / 1000) \times 0.5=0.05$

Moles of zinc reacted $=0.05$

Mass of zinc lost $=0.05 \times 65.4=3.27 \mathrm{~g}$
Correct final answer without working scores M3 only.
(c) Allow cell to discharge until [Cu^{2+}] is 0.5

Alternative: Allow cell to discharge completely.

Confirmed by colorimetric measurement or other suitable method
Solution colourless or use of chemical test to determine absence of copper(II)

Weigh the Zn electrode before and after the experiment
Weigh Zn electrodes before and after and halve the mass change.
(a) Manganate would oxidise / react with $\underline{\mathrm{Cl}}^{-}$

Because E^{\ominus} for MnO_{4}^{-}is more positive than that for $\mathrm{Cl}^{2} / 1.51-1.36=+0.15(\mathrm{~V})$ Must refer to data from the table for M2.
(b) Moles of $\mathrm{H}^{+}=25 \times 0.0200 \times 8 / 1000=4.00 \times 10^{-3}$

Moles of $\mathrm{H}_{2} \mathrm{SO}_{4}=2.00 \times 10^{-3}\left(4.00 \times 10^{-3} / 2\right)$
Allow consequential marking on incorrect moles of H^{+}

Volume $\mathrm{H}_{2} \mathrm{SO}_{4}=4.00\left(\mathrm{~cm}^{3}\right)\left(2.00 \times 10^{-3} \times 1000 / 0.500\right)$
Allow consequential marking on incorrect moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$
Accept $4 \mathrm{~cm}^{3}$.
$8 \mathrm{~cm}^{3}$ scores 2 marks.
Do not penalise precision.
Correct answer without working scores M3 only.
(c) (i) $\mathrm{MnO}_{4}^{-}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-} \rightarrow \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Allow multiples, including fractions.
Ignore state symbols.
(ii) Can't see end point due to brown colour

Larger titre (than expected)
Allow the idea that with two reactions can't make use of titre in calculations.
Do not allow 'an inaccurate result' without qualification.
(d) Solution (very) dilute / lots of water

8 (a) To remove the oxide layer on the aluminium
Do not allow 'cleaning' or 'removal of grease'.
Do not allow 'removal of impurities' without qualification.
(b) An appropriate method for delivering H_{2} gas over a Pt electrode

Need H_{2} gas and Pt electrode labelled (allow gas delivered directly below the electrode).

The Pt electrode must clearly be in contact with a solution of a named acid.
Ignore any concentration or pressure values.
Ignore absence of bubbles.
Allow if electrode is below outer acid level.
(c) The carbonate ion reacts with the acid (in the SHE) / reaction between carbonate and Al^{3+}

Lose this mark if aluminium carbonate formed but mark on.

Reaction given (either equation or products specified)
OR $\mathrm{H}^{+} / \mathrm{Al}^{3+}$ concentrations change / cell e.m.f. altered

9 Measure volume of gas / mass loss

If 'measure concentration' must explain how to score mark

At (regular) time intervals
Ignore references to temperature
Accept 'against time'
Do not accept 'with time' or 'over time' on its own

10 (a) Temperature / pressure;
Do not allow 'amount' or concentration of reactants.
(b) Determine gradient;

Do not allow volume / time.
Accept 'steepness' or 'slope'

